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Abstract

Causal reasoning is a fundamental cognitive ability that enables individuals to learn

about the complex interactions in the world around them. However, the mechanisms

that underpin causal reasoning are not well understood. For example, it remains unre-

solved whether children’s causal inferences are best explained by Bayesian inference

or associative learning. The two experiments and computational models reported here

were designed to examine whether 5- and 6-year-olds will retrospectively reevaluate

objects—that is, adjust their beliefs about the causal status of some objects presented

at an earlier point in time based on the observed causal status of other objects pre-

sented at a later point in time—when asked to reason about 3 and 4 objects and under

varying degrees of information processing demands. Additionally, the experiments and

models were designed to determine whether children’s retrospective reevaluations

were best explained by associative learning, Bayesian inference, or some combina-

tion of both. The results indicated that participants retrospectively reevaluated causal

inferences under minimal information-processing demands (Experiment 1) but failed

to do so under greater information processing demands (Experiment 2) and that their

performance was better captured by an associative learning mechanism, with less

support for descriptions that rely on Bayesian inference.

KEYWORDS

associative learning, Bayesian inference, causal reasoning, cognitive mechanisms, computational
models

Research Highlights

∙ Five- and 6-year-old children engage in retrospective reevaluation under minimal

information-processing demands (Experiment 1).

∙ Five- and 6-year-old children do not engage in retrospective reevaluation under

more extensive information-processing demands (Experiment 2).

∙ Across both experiments, children’s retrospective reevaluations were better

explained by a simple associative learning model, with only minimal support for a

simple Bayesianmodel.

∙ These data contribute to our understanding of the cognitive mechanisms by which

childrenmake causal judgements.
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1 INTRODUCTION

Few capacities aremore important than the ability to reason andmake

inferences about causal relations. Causal reasoning enables human

learners to make predictions and inferences (e.g., Bullock, et al., 1982;

Shultz, 1982), to intervene on those relations to generate new effects

(e.g., Butler et al., 2020; Schulz et al., 2007), and to reason about coun-

terfactual claims—both about what might have been and how events

could have turned out differently (e.g., Harris et al, 1996; Walker

& Nyhout, 2020). These, and many other studies (e.g., Bonawitz &

Lombrozo, 2012; Gopnik et al., 2001; Legare et al., 2010; Meltzoff

et al., 2012; Walker & Gopnik, 2014), posit that young children have

sophisticated causal reasoning capacities.

A fundamental question that underlies this research is how children

make such inferences. One answer to this question is that children’s

causal inferences are best described by rational processes such as

Bayesian inference. This process is thought to derive from more basic

processes such as statistical learning that are present in early infancy

(e.g., Gomez, 2002; Kirkham et al., 2002; Marcus et al., 1999; Saffran

et al., 1996) and that with time enable infants to infer abstract pat-

terns of coherent causal structure from probabilistic data (Gopnik &

Wellman, 2012; Weisberg & Sobel, 2022). Although this view is often

described as a computational level of analysis (cf. Marr, 1982), some

advocates suggest that childrenuse cognitivemechanisms that approx-

imate or even represent Bayesian calculations (Bonawitz et al., 2014;

Xu, 2019; see also Griffiths et al., 2015).

An alternative perspective is that associative learning alone is

sufficient to describe children’s causal inferences. On this view, chil-

dren’s causal knowledge reflects learned associations between causes

and effects. Connectionist models—which learn largely via associa-

tive learning—have provided a proof of concept that causal learning

can emerge from such associative processes (e.g., Benton et al., 2021;

McClelland & Thompson, 2007). Additionally, comparative investiga-

tions between non-human animals and adults (e.g., Heyes, 2012) and

studies of instrumental action and conditioning in human infants (e.g.,

Greco et al., 1990; Rovee-Collier, 1999) provide behavioral support for

associative learning as a candidatemechanism for how children reason

in the world.

One way to illustrate the tension between these hypotheses in

development is through investigations of retrospective reasoning such

as backwards blocking (Shanks, 1985). This is a form of reasoning that

involves reevaluating the causal status of an ambiguous event based

on learning more about the status of other unambiguous events (see

also De Houwer et al, 2002; Kruschke & Blair, 2000; Larkin et al, 1998;

Lovibond, 2003; Van Hamme & Wasserman, 1994, for other work on

adults). One of the first studies to examine backwards blocking reason-

ing in children was carried out by Sobel et al. (2004). They introduced

3- and 4-year-olds to a machine called a “blicket detector” that lit up

and playedmusic when certain objects called “blickets” were placed on

it (Gopnik & Sobel, 2000). Children were then shown that two novel

objects, A and B, activated the machine when they were placed on it

at the same time. Children were then shown that object A alone either

did or did not activate the machine. On both types of trials, children

were then asked whether each object was a blicket. Children indi-

cated that object A was a blicket when it activated the machine and

that it was not a blicket when it did not activate the machine. Their

judgments of object B also differed across these conditions. Children

were more likely to conclude that object B was a blicket when object

A failed to activate the machine than when A activated the machine.

Using modified procedures, toddlers and even infants as young as

8 months of age showed a similar pattern of responses (Sobel &

Kirkham, 2006).

These findings—and specifically the finding that children’s causal

inferences are sensitive to base rates (e.g., Sobel et al., 2004, Exp. 3)—

have been interpreted as support for a Bayesian description of causal

reasoning rather than as support for an associative learning mecha-

nism. This is because some associativemodels (e.g., Rescorla &Wagner,

1972) predict that the strength between object B and the machine’s

activation is equivalent between the Backwards Blocking trial (where

A is effective) and another trial in which A is not effective (labeled Indi-

rect Screening-Off trials). Moreover, even a modified version of the

Rescorla-Wagner model (e.g., Van Hamme & Wasserman, 1994) does

not predict differences in such reasoning when the base rates of the

causal effectiveness of an object is manipulated.

However, there are two facets of these data that warrant fur-

ther consideration. First, McCormack et al. (2009) questioned what

exactly was being reevaluated in a backwards blocking inference. They

showed 4- and 5-year-olds that two objects (A and B) activated the

machine together, and then that object A activated the machine alone.

They compared children’s causal status judgments for object B with a

sequence in which a third object (C), unrelated to the compound set,

activated the machine (i.e., AB+, C+). The 4-year-olds did not differ

in their judgments (although 5-year-olds did—they were less likely to

choose B than C). This control measure—which we adopt here—is a

superiormeasureof assessingwhether children reevaluate their causal

judgments and specifically of examining whether children reevaluate

the causal status of the object(s) shown independently, or the object

only shown as part of the initial ambiguous data.

Second, although there are investigations suggesting Bayesianmod-

els are a better account for children’s retrospective reasoning (e.g.,

Griffiths et al., 2011; Sobel et al., 2004), these investigations focus on a

simplified case inwhich learners are asked to reason about exactly two

candidate causes. Indeed, when three candidate causes are presented,

some of children’s inferences are better explained by Bayesianmodels,

whereasother inferences arebetter explainedbyassociative reasoning

(Griffiths et al., 2011; Experiment 3). This suggests an intriguing possi-

bility: As the number of candidate causes increases, children might fall

back to simpler strategies such as associative learning frommore ratio-

nal reasoning strategies (akin to System 1/System 2 reasoning, Evans,

2003, 2011; Kahneman, 2011).

But how, exactly, is associative learning a simpler mechanism than

Bayesian inference? The answer concerns the nature of the hypothesis

spaces that underlie both models. Some associative models (including

the one we instantiate here) posit a linear increase in the complexity
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of the underlying hypothesis space based on the number of potential

causes; that is, as the number of potential causes moves from 2 to n,

the complexity of the hypotheses under consideration increases lin-

early from 2 to n, such that children must keep track of n associative

values between each candidate cause and the effect. In contrast, in

Bayesian models (as we will instantiate below) the underlying hypoth-

esis space grows exponentially as the number of candidate causes

increases. For example, if each object can either be a blicket or not

and children are asked to reason about two potential blickets, then

children would need to determine which of 22 or four causal hypothe-

ses is correct. If, instead, children are asked to reason about just two

more potential blickets for a total of four candidate blickets, then the

underlying hypothesis space increases four-fold to 16 (i.e., 24) poten-

tial causal hypotheses. Thus, if children are sensitive to this increase

in the size of the underlying hypothesis space and they possess limited

information-processingabilities, then theymight relyon simplermodes

of processing such as associative learning than on more sophisticated

forms of thinking that approximate normative Bayesian inference.

The premise is that children have both associative and more rational

causal reasoning mechanisms, but default to the former under more

information processing demands.

There is now considerable evidence demonstrating that children

do default to simpler modes of thinking when their information-

processing abilities are taxed (e.g., Doebel & Zelazo, 2015; Frye et al.,

1995; Zelazo et al., 1996; Zelazo et al., 2003). For example, recently

Kenderla and Kibbe (2023) demonstrated that 8- and 10-year-old

children showed decreased reliance on working memory and greater

dependence on manual exploration during a challenging virtual mem-

ory game. The goal of this gamewas to find three cardswith shared and

differing features. Given that children were not required to maintain

information in memory when manually exploring, manual exploration

ostensibly was a less cognitively effortful strategy than one that

required an already resource-limited system such as working memory.

Similarly, Richland et al. (2006) found that 3- and 4-year-old children

made more featural and relational errors when asked to reason about

multiple relations or when the task included a salient distractor than

when asked to reason about a single relation without a distractor.

Even in infancy there is development frommore associative tomore

rational inferences. Using an anticipatory eye-gazemeasure, Sobel and

Kirkham (2007) found that 8-month-olds exhibited backwards block-

ing inferences similar to preschoolers, but 5-month-olds’ inferences

were more associative in nature. When infants make judgments about

the reliability of others’ information, their decision-making seems to

be best explained by associative processing (Sobel et al., 2020; Tum-

meltshammer et al., 2014). As children enter the preschool years,

those judgments become more rational in nature (Sobel & Kushnir,

2013), although occasionally, they will default to associative forms of

processing, particularly under information processing demands (e.g.,

Hermes et al., 2018; Luchkina et al., 2020). Further, on other kinds

of retrospective causal reasoning tasks, as the information demands

of the procedure increase, only older children between 3 and 7

years of age succeed (e.g., Erb & Sobel, 2014; Fernbach et al., 2012;

Sobel et al., 2017). Finally, beyond explicit causal reasoning tasks,

preschoolers’ performance on theory-of-mind and social-problem-

solving tasks was adversely affected when they first completed tasks

that taxed their information-processing abilities compared to when

such capacities were not taxed (Caporaso & Marcovitch, 2021; Pow-

ell & Carey, 2017; Steinbeis, 2018). Considered together, these studies

indicate that children use different reasoning processes under differ-

ent information-processing demands; the higher those demands, the

simpler the process (e.g., Cohen, 1988).

In the present study, we considered how children made retrospec-

tive inferences when first shown ambiguous data (i.e., three objects

together produce aneffect), followedby further evidence involvingone

of those objects (Experiment 1) or two of those objects (Experiment

2). In both cases, the logic of our design followed McCormack et al.

(2009), in which we contrasted these retrospective inferences with

control trials inwhich children sawthe same initial ambiguousdata, and

then unrelated objects that had similar efficacy. The question across

both experiments was whether children show qualitative evidence for

Bayesian inference andassociative learningwith anedge towards asso-

ciative learning. After presenting these behavioral data across two

experiments, we present a pair of computational models to determine

towhat extent children’s performance in Experiments 1 and 2was bet-

ter explained by Bayesian inference, associative learning, or both. The

value of computational modeling here is that it can help to elucidate

the cognitive mechanism or mechanisms by which children engage in

retrospective reevaluation in ways that the experiments alone cannot.

Specifically, by implementing as computer simulations theories about

how children engage in retrospective reevaluation, it is possible to

determine the theory—and by extension, the mechanism—that better

accounts for the behavioral data.

2 EXPERIMENT 1

Five- and 6-year-olds observed three objects (A, B, and C) together

cause a machine to activate. Then they observed that object A

either caused (Backwards Blocking trials) or failed to cause (Indirect

Screening-Off trials) the machine to activate by itself. They were then

asked whether each object individually caused the machine to acti-

vate. These experimental trials were compared to control trials in

which children observed three different objects (A’, B’ and C’) activate

the machine together, followed by a fourth object (D), which either

did (Backwards Blocking control) or did not (Indirect Screening-Off

control) make themachine activate.

In these trials, a retrospective reevaluative causal inference is

defined as participants treating the objects in the control trials that go

on the machine together (A’, B’, and C’) differently from the objects in

the experimental trials that initially went on the machine together in

the first demonstration, butwhose individual efficacywas not revealed

(i.e., B and C). In the Backwards Blocking trials, participants were said

to engage in this form of reasoning if they were more likely to choose

objectsA, B, andC (i.e., the objects thatwere not shownon themachine
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by themselves) in the control trials than objects B and C in the exper-

imental trials (i.e., the objects that were not shown on the machine

by themselves). The reason for this is straightforward: Given that A

was shown initially in combination with B and C, observing subse-

quently that A causes the machine to activate by itself should affect

participants’ inferences about B andC. However, because object Dwas

never shown in combination with A’-C’, D’s causal status should have

no bearing on participants’ treatment of objects A’-C’. In the indirect

screening-off trials, participants were said to engage in this form of

reasoning if they were more likely to choose objects B and C in the

experimental trial than objects A, B, and C in the control trial. The

rationale for why these ratings should differ is identical to that for the

Backwards Blocking condition—because A was shown in combination

with objects B and C, A’s, but not D’s, causal status should affect how

participants rate the objects that never participated on the machine

alone. Because McCormack et al. (2009) found that 5 and 6-year-olds

made such retrospective inferences about two candidate causes, we

have decided to test children of the same age.

2.1 Method

2.1.1 Participants

Participants were 32 five-year-olds (16 boys and 16 girls; M = 64.81

months, range = 60–71 months, standard deviation [SD] = 3.48) and

31 six-year-olds (17 boys and 15 girls;M= 77.81 months, range= 72–

83months, SD= 3.78). Sample size was determined based on previous

studies on backwards blocking reasoning in children (e.g., Griffiths

et al., 2011; Sobel et al., 2004). Two children were excluded from

analysis for failing to participate (N = 1) or missing video (which

made coding their responses impossible) (N = 1). We did not collect

demographic informationabout the sample, but thedemographic infor-

mation about sample of children collected by the laboratory during this

time was as follows: 82% White/Caucasian, 3% Black/African Amer-

ican, 4% Asian/Asian American, 0.5% Native American, and 11% of

Mixed Descent. Sixteen percent identified as Hispanic/Latinx. Simi-

larly, the overall household income level of families tested in the lab

during this time was as follows: Less than 30K: 7%, 30–50K: 7%, 50–

70K: 14%, 70–90K: 9%, 90–120K: 25%, Over 120K: 38%. The median

income for the population as measured by the 2020 Census was

∼$74K.

2.1.2 Materials

The “device” used in the current study was a computer-animated ver-

sion of the blicket detector (Gopnik & Sobel, 2000). The device was a

white rectangle with a black border thatmeasured 5.99 cm× 23.47 cm

and that was presented on a computer screen. If the device was “on,”

the white region of the rectangle turned blue when objects touched it.

If the device was “off,” the white region remained white. A maximum

of four differently colored circles were shown on the screen. Each cir-

cle measured 2.67 cm × 2.67 cm (see Figure 1 below). The machine

was designed such that it activated immediatelywhen the bottommost

edge of a circle—predetermined to be a blicket—contacted it. At the

start of any given trial, three or four equally spaced circles appeared

above themachine. Finally, the videos contained a built-in script, which

experimenters, but not the study participants, read. All video events

were created inMicrosoft PowerPoint.

2.1.3 Procedure

All study procedures were reviewed and approved by the University’s

Institutional Review Board, and parental informed consent and child

assent was obtained before each experimental session. Participants

were tested in a quiet room in a local children’s museum. At the begin-

ning of the experiment, all participantswere shown a pretraining video.

The text, “We’re going to play a game with my machine. This is a very

special machine. It’s my blicketmachine. Blickets make themachine go.

So, let’s find all theblickets” appearedon the screenandwas read to the

participants by the experimenter. The video consisted of a rectangular

base (i.e., the previously mentioned “blicket detector”) and two shapes

(i.e., a gray triangle and a gray pentagon). Crucially, these shapes were

unrelated to the circles used during the experimental portion of the

experiment. The pretraining phase began with the triangle (object A)

and pentagon (object B) next to each other above the machine. Object

A then descended until it contacted the machine, which immediately

activated (i.e., the white region changed from white to blue). Object A

then returned to its starting position above themachine. Object B then

descended until it contacted and failed to activate themachine. Object

B then returned to its starting position. Finally, both objects descended

until they contacted and activated themachine. Participantswere then

asked whether each object was a blicket. This event ensured that par-

ticipants understood the task and recognized that individual objects

could activate themachine and that it activated if at least one effective

object was placed on it.

Following this pretraining phase, participants were given four trials.

Half the participants received two backwards blocking experimen-

tal trials and two backwards blocking control trials. The other half

received two indirect screening-off experimental trials and two indi-

rect screening-off control trials. The order of these trials within each

condition was counterbalanced using a Latin square design. Differ-

ent colored objects were used across all trials to prevent carryover

effects. A schematic of this procedure is shown in Figure 1. Finally, all

study responses were coded offline after each study session. Although

study responses were coded offline, an experimenter was present

throughout an entire study session.

2.1.4 Backwards blocking experimental and
control trials

The two backwards blocking experimental trials began with three dif-

ferently colored objects, which were located above the machine. The
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F IGURE 1 Schematic of a Backwards Blocking experimental trial. The upper-right portion of the figure shows the backwards blocking event as
it unfolded across time. The lower-left portion of the figure shows the three objects and the text, “Is this one a blicket?” above each object across
time.

text, “Look, I have these three toys. Let’s find the blickets. Watch what

happens” appeared above the objects. All three objects (i.e., objects

A, B, and C) then descended until they contacted and activated the

machine.At this point, the text, “Look, these alsomake themachine go!”

appeared above the objects. The objects then returned to their starting

positions.

The left- or right-most (counterbalanced) object (which herewewill

refer to as object A) then descended until it contacted and immediately

activated the machine. The text, “Look, this one makes the machine

go!” then appeared above the objects. This object then returned to its

starting position. Children were then asked whether each object was a

blicket. Specifically, the text, “Is this one a blicket?” with a downward-

facing arrow then appeared above each object, and participants were

asked to indicate whether each object was a blicket. Children received

two of these trials, which were identical except for the color of the

objects.

The two backwards blocking control trials began with four dif-

ferently colored objects (i.e., objects A, B, C, and D), which were

located above the machine. Objects A, B, and C then descended

until they contacted and activated the machine; object D remained in

place while objects A-C descended onto the machine. Object D then

descended by itself until it contacted and activated the machine. The

left-right position of object D was counterbalanced. Children were

then asked whether each object was a blicket. Children once again

received two trials, which were identical except for the color of the

objects.

2.1.5 Indirect screening-off experimental and
control trials

Theprocedures for the indirect screening-off experimental and control

conditions were identical to the backwards blocking trials except that

objectA (experimental trials) andD (control trials) failed to activate the

machine. Table 1 below illustrates the key trial structures for the Back-

wards Blocking and Indirect Screening-Off conditions in Experiment 1.
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TABLE 1 Schematic of the task structure for the backwards
blocking and indirect screening-off experimental and control trials.

Condition

First

learning

phase

Second

learning

phase

Backwards blocking (experimental) ABC+ A+

Backwards blocking (control) ABC+ D+

Indirect screening-off (experimental) ABC+ A-

Indirect screening-off (control) ABC+ D-

2.2 Results

Figure 2 shows participants’ responses to “Is this a blicket?” for

each object. Participants’ yes/no responses were treated as the

primary binary dependent measure. All analyses were conducted

with the lme4 package in R (Bates et al., 2015). Deidentified data

for all experiments, along with all analysis code, is available on OSF

(https://osf.io/n6mvq/?view_only=a6b8231a6b9743c7bfe896ba1eab

58f3). Data were entered into a five-way mixed-effects logistic regres-

sion with Age as a continuous fixed effect, Condition (Backwards

Blocking vs. Indirect Screening-Off) as the between-participants fixed

effect, Trial Type (Experimental vs. Control), Objects (A vs. B vs. C vs.

D), and Trial Number (Trial 1 vs. Trial 2) as the within-participants fixed

effects, and participant as the random effect. This analysis yielded

several experimental-effects and two-way interactions, which were

qualified by a single three-way interaction among Condition, Trial

Type, andObject, χ2(2)= 64.85, p< 0.001.

To unpack the nature of the interaction amongCondition, Trial Type,

andObject,we ran separate two-waymixed-effects logistic regressions

separately for the Backwards Blocking and Indirect Screening-Off con-

ditions, with Trial Type (Experimental vs. Control) and Objects (A vs. B

vs. C vs. D) as the within-participants fixed effects and participant as

the random effect. This analysis revealed a main effect of Trial Type,

χ2(1) = 9.62, p = 0.002 and an interaction between Trial Type and

Objects, χ2(2) = 16.38, p < 0.001. To explore this interaction, we con-

structed a set of one-way mixed-effects logistic regressions for the

experimental and control trials within the Backwards Blocking condi-

tion. The Objects factor was treated as the sole within-participants

fixed effect in these follow-up analyses. Participants were once again

treated as a random effect to control for the within-participant vari-

ance from multiple responses. The one-way mixed-effects logistic

regression for the control trials within the Backwards Blocking condi-

tion did not reveal a significant effect of Objects, χ2(3)= 1.33, p= 0.72.

This means that participants treated the objects similarly in the con-

trol trials of the Backwards Blocking condition. In contrast, the second

one-way mixed-effects logistic regression for the experimental trials

within the Backwards Blocking condition revealed a significant exper-

imental effect of Objects, χ2(2) = 19.29, p < 0.001. This experimental

effect reflected the fact that participants judged object A as a blicket

moreoften thanobjectB, odds ratio=204.79, 95%CI [33.96, 4609.11],

p < 0.001, and object C, odds ratio = 129.67, 95% CI [18.75, 2824.63],

p < 0.001. However, participants treated objects B and C equivalently,

odds ratio= 1.58, 95%CI [0.62, 4.19], p= .34.

The two-way mixed-effects logistic regressions for the Indirect

Screening-Off condition also revealed a main effect of Trial Type,

χ2(1) = 26.91, p < 0.001, a main effect of Objects, χ2(3) = 67.32,

p < 0.001, and an interaction between Trial Type and Objects,

χ2(2) = 19.59, p < 0.001. To explore this interaction, we constructed

a set of one-way mixed-effects regressions for the experimental and

control trials within the Indirect Screening-Off condition. The two

one-way mixed-effects regressions for the experimental and control

trials revealed a significant experimental effect of Objects, both χ2-
values > 36.78, both p-values < 0.001. In the experimental trials,

participants judged object A as a blicket less often than any of the

other objects, all odds ratios < 0.07, all p-values < 0.001. Likewise, in

the control trial, participants considered object D to be less likely to

be a blicket than any of the other objects, all odds ratios < 0.06, all

p-values< 0.001. No other differences reached statistical significance.

2.2.1 Evidence of retrospective reasoning

To examine whether participants engaged in backwards blocking

reasoning, data for the experimental and control trials within the Back-

wards Blocking condition were entered into a two-way mixed-effects

logistic regressionwithTrial Type andObject as thewithin-participants

fixed effects and participants as the random effect. This analysis

revealed only a main effect of Trial Type, χ2(1) = 17.72, p < 0.001.

This result indicated that participants did engage in backwards block-

ing reasoning. In particular, a follow-up, one-waymixed-effects logistic

regression showed that participants were less likely to consider the

objects whose efficacy was not shown individually in the experimen-

tal trial (i.e., objects B and C) to be blickets than the objects that were

placed on the machine together in the control trial (i.e., objects A’, B’,

and C’), odds ratio= 0.19, 95%CI [0.09, 0.78], p< 0.001.

We also ran the same analysis as above, but this time for the Indi-

rect Screening-Off condition. Although this analysis also revealed a

main effect of Trial Type, χ2(1) = 4.39, p = 0.04, a follow-up, one-way

mixed-effects logistic regression indicated that participants’ treated

the objects that did not participate on themachine in the experimental

trials (i.e., objects B and C) and the objects that did not participate on

the machine in the control trials (i.e., objects A, B, and C) equivalently,

odds ratio= 0.50, 95%CI [0.25, 1.01], p= 0.052.

2.3 Discussion

In the experimental trials of Experiment 1, children were shown three

objects that together activated a machine and then shown that one of

thoseobjectswasorwasnot effectiveon its own.When that objectwas

effective, children reevaluated the efficacy of the other two objects:

They stated that they were less likely to be effective than objects in

a control condition in which a fourth, unrelated object was effective.

When that object was not effective, children did not retrospectively
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F IGURE 2 Participants’ responses expressed as percentages to whether each object was a blicket across the conditions and trial types. Bars
show standard error.

reevaluate the efficacy of the other objects and judged the objects

equivalently across both conditions.

Before discussing possible cognitive mechanisms that might under-

lie these data, we wanted to consider a second, related type of

retrospective inference. In Experiment 1, following the ABC+ event,

participants were either shown an A+ event (in the Backwards Block-

ing condition) or an A- event (in the Indirect Screening-Off condition).

Experiment 2 was similar to Experiment 1 except for what children

observed following the ABC+ events (e.g., McCormack et al., 2009).

In the experimental trial in the Backwards Blocking condition, they

observed an AB+ event during the second learning phase; in the con-

trol trial in the same condition, children observed a DE+ event during

the second learning phase. Children in the Indirect Screening-Off con-

dition were shown the same series of events except that the machine

did not activate. If children’s ability to engage in various forms of ret-

rospective reevaluation is related to their information processing, in

Experiment 2 children should be less likely to engage in retrospective

reevaluation than those in Experiment 1.

3 EXPERIMENT 2

Experiment 2was analogous to Experiment 1 except for the number of

objects that were placed on the machine during the second part of the

experimental and control trials. In the experimental trial, childrenwere

shown that three objects activated themachine together, and then that

two of those three objects either did or did not activate the machine

when they were placed on it together. These data were compared with

a control trial in which three different objects activated the machine,

and then two additional novel objects either did or did not activate the

machine in tandem.

3.1 Method

3.1.1 Participants

Participants were 32 five-year-olds (18 boys and 14 girls; M = 65.31

months, range = 60–75 months, SD = 3.65) and 32 six-year-olds

(10 boys and 22 girls; M = 76.56 months, range = 65–83 months,

SD = 4.33). Participants were recruited in the same manner as

Experiment 1. Participants were 12% Asian/Asian American, 9%

Black/African American, 10%Hispanic, and 69%White/Caucasian, but

no other specific demographic data were collected (see Experiment 1

for overall demographic data from the laboratory).

3.1.2 Materials and procedure

The materials and procedure for Experiment 2 were identical to that

for Experiment 1with the following exceptions: During the experimen-

tal trials in the Backwards Blocking condition following an event in

which objects A, B, and C together activated the machine, two objects,

A and B, descended onto and subsequently caused themachine to acti-

vate. Likewise, during the control trials in the same condition which

consisted of five objects (i.e., objects A–E), objects D and E descended
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8 of 16 BENTON ET AL.

TABLE 2 Schematic of the task structure for the backwards blocking and indirect screening-off experimental and control trials.

Condition First learning phase Second learning phase

Backwards blocking (experimental) ABC+ AB+

Backwards blocking (control) ABC+ DE+

Indirect screening-off (experimental) ABC+ AB-

Indirect screening-off (control) ABC+ DE-

F IGURE 3 The participants’ responses expressed as percentages to whether each object was a blicket across the conditions and trial types.
Bars show standard error.

onto and subsequently caused the machine to activate. Objects D and

E did not descend onto the machine during the initial event in which

A, B, and C activated the machine and in this way were unrelated to

objects A, B, and C. The experimental and control trials in the Indirect

Screening-Off condition were identical to the backwards blocking tri-

als except that the machine neither activated when objects A and B

descended onto it in the experimental trial nor when objects D and E

descendedonto it during the control trial. The left- and right-most posi-

tions of objects A and B during the experimental trial and objects D

and E during the control trial were counterbalanced. Table 2 shows the

structure of the events used in Experiment 2.

3.2 Results

Figure 3 shows participants’ responses to “Is this a blicket?” for each

object. Datawere entered into a five-waymixed-effects logistic regres-

sionmodelwithAge as a continuous fixed effect, Condition (Backwards

Blocking vs. Indirect Screening-Off) as the between-participants fixed

effect, Trial Type (Experimental vs. Control), Objects (A vs. B vs. C vs.

D), and Trial Number (Trial 1 vs. Trial 2) as the within-participants fixed

effects, and participant as the random effect. This analysis only yielded

a main effect of Trial Type, χ2(1) = 14.33, p = 0.04. This reflected that

fact that across the Backwards Blocking and Indirect Screening-Off,

participantswere less likely to treat the objects in the experimental tri-

als as blickets than objects in the control trials, odds ratio = 0.45, 95%

CI [0.33, 0.62], p< .001.

3.2.1 Evidence of retrospective reasoning

We next examined whether participants engaged in retrospective rea-

soning using the operationalization of it from Experiment 1. Data were

entered into a two-way mixed-effects logistic regression with Trial

Type and Object as the within-participants fixed effects and partici-

pants as the randomeffect. This analysis did not reveal anymain effects
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BENTON ET AL. 9 of 16

F IGURE 4 The eight different causal hypotheses indicating the possible causal relations for a causal event that involves three objects and one
blicket detector. A, B, and C correspond to the three objects that were used on themachine and E indicates the activation of themachine.

or interactions, all χ2-values < 1.91, all p-values > 0.18. The same pic-

ture emerged for the indirect screening-off condition—this analysis did

not reveal any main effects or interactions, all χ2-values < 1.79, all p-

values > 0.41. Thus, unlike Experiment 1, there was no evidence that

participants engaged in any form of retrospective reevaluation. This

finding is likely the result of the increased demand on children’s infor-

mation processing abilities: Children were not only required to reason

about 3 and 4 objects (as in Experiment 1), but they were also required

to reasonabout2 rather than1object during the second learningphase

in the Backwards Blocking and Indirect Screening-Off conditions.

3.3 Discussion

Unlike Experiment 1, in Experiment 2 there was no evidence that chil-

dren engaged in retrospective reasoning. Specifically, children treated

the objects equivalently between the experimental and control trials.

In addition, across both experiments there was no evidence that ret-

rospective reevaluation undergoes developmental change between 5

and 6 years of age. We return to this issue in the General Discussion.

In the next section, we present fits from two computational models

to determine whether an associative mechanism, a Bayesian mecha-

nism, or some combination of both best captures children’s judgements

across Experiments 1 and 2.

4 COMPUTATIONAL MODELS

Wefit two computationalmodels to the behavioral data. The firstwas a

model based on Bayesian inference. This model was described initially

by Sobel et al. (2004) and in more detail in Griffiths et al. (2011). The

second was a simple connectionist model, trained with the Delta Rule

(Widrow&Hoff, 1960).

4.1 Bayesian model

The Bayesian model we use here has been described previously (Grif-

fiths & Tenenbaum, 2005; Griffiths et al., 2011; Tenenbaum&Griffiths,

2001). We refer the reader to these citations for more of a technical

description. Here, we describe the basics of the model. Bayesian rea-

soning assumes the learner has a set of hypotheses H. Each hypothesis

h∈H is assigned a prior probability, p(h), which indicates the initial belief

that a learner has in a particular hypothesis prior to seeing data. After

the learner observes data, d, the learner computes a posterior proba-

bility, p(h|d)—an updated belief about each hypothesis given the data.

This is done using Bayes’ rule, shown in Equation (1):

p (h|d) = p (d|h) p (h)∑
h′ ∈H p (d|h′) p (h′)

(1)

In this formula, p(d|h) is the probability that the data d will be

observed under a particular hypothesis h. This value is also known as

the likelihood of the data.

Forming the initial hypothesis space for this model assumes that

there is a set of objects O and a detector d, such that any object o ∈ O

can potentially cause d to activate. Given that participants are shown

that the machine activates when objects with the label “blicket” are

placed on its surface, a hypothesis h corresponds to a causal structure

that posits whether individual objects have the causal effectiveness to

activate the detector—that is, an arrow between a node representing

an object and a node representing the machine’s activation (see Grif-

fiths & Tenenbaum, 2005, for more computational details; see Figure 4
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10 of 16 BENTON ET AL.

TABLE 3 Model fit indices for the various models and instantiations for the data overall and the data for the backwards blocking, indirect
screening-off, experimental, and control trials in Experiments 1 and 2 data.

(A)Model fit to the data overall

Experiment 1 Experiment 2

Connectionist‡ Bayesianmodel Connectionist‡ Bayesianmodel

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

0.15 0.11 0.17 0.17 0.13 0.11 0.16 0.13

(B)Model fit to the backwards blocking data only

Experiment 1 Experiment 2

Connectionist‡ Bayesianmodel Connectionist‡ Bayesianmodel

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

0.19 0.16 0.20 0.18 0.13 0.11 0.15 0.14

(C)Model fit to the indirect screening-off data only

Experiment 1 Experiment 2

Connectionist‡ Bayesianmodel Connectionist Bayesianmodel‡

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

0.08 0.07 0.18 0.16 0.11 0.11 0.12 0.03

(D)Model fit to the experimental trials only

Experiment 1 Experiment 2

Connectionist Bayesianmodel Connectionist Bayesianmodel‡

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

0.19 0.16 0.19 0.16 0.16 0.14 0.14 0.12

(E)Model fit to the control trials only

Experiment 1 Experiment 2

Connectionist‡ Bayesianmodel Connectionist‡ Bayesianmodel

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

0.10 0.08 0.20 0.17 0.11 0.09 0.17 0.17

Abbreviations:MAE, mean absolute error; RMSE, root mean square error.
‡Corresponds to the better fitting overall model based on average RMSE andMAE.

for the hypothesis space). Griffiths et al. (2011) describe the formal

parameterization of this hypothesis space andmodel that results in the

hypothesis space shown in Figure 3, in which nodes A, B, and C repre-

sent objects A, B, and C each being placed on themachine respectively,

and node E represents the “effect”—themachine activating.

To instantiate themodel, each hypothesis is given a prior probability

p(h), which is a function of the child’s belief about how likely any object

is to be a blicket (i.e., the base rate of blickets), ρ. This prior corresponds
to the number of blickets posited by the hypothesis. For example, in the

figure, Hypothesis 0 posits 3 blickets, so its p(h) = ρ3. Hypotheses 1, 2,
and 4 posit exactly 2 blickets, so their p(h) = ρ2(1−ρ). Hypotheses 3, 5,
and6eachposit 1,whichmakes theirp(h)=ρ(1−ρ)2. Finally,Hypothesis
7 posits no blickets, whichmakes its p(h)= (1-ρ)3.

For the purposes of this demonstration, we will assume that the

model itself assumes that objects with causal efficacy will act deter-

ministically on detectors.1 As a result, the likelihood of each hypothesis

is equal to 1 if that hypothesis could produce the data and 0 if not.

This allows each model to be updated based on Bayes’ rule, given the

data. Theway themodel then determines the probability that an object

is a blicket is based on the posterior probability of the models in the

hypothesis space. The probability that an object o is a blicket is the

probability that it activates the machine, given the data d (i.e., p(o→E

| d). This can be calculated by Equation (2)

p(o→ E | d) = ∑
h ∈ H

p(o→ E | h)p (h|d) (2)

where p(o→E | h) is 1 if there is an edge between that object and the

detector in that particular hypothesis, and 0 otherwise.

Crucially, because the predictions of this (or any) Bayesian model

will dependon theprior probability that any givenobject is a blicket,we

fit aBayesianmodelwith the followingprior probabilities: 0.5, 0.65, 0.8,

0.95, and 1.We considered a range of prior probabilities because it was

unclear what participants’ baseline assumptions were about the prior

probability of blickets in the absence of explicit manipulations to those

probabilities. Thus, byderiving themodel’s predictions for variousprior
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BENTON ET AL. 11 of 16

F IGURE 5 The connectionist model used to simulate
Experiment 1.

probabilities, itwas possible to compare themodel’s predictions for the

different probabilities to children’s actual treatment of the objects. The

best quantitative fit of this model to the data in Experiments 1 and 2 is

shown below in Table 3.

4.2 Connectionist model

We also built a set of two-layer connectionist models. One of these

models corresponded to Experiment 1 and the other corresponded to

Experiment2. Themodel architecture for theExperiment1 simulations

is shown in Figure 5. The rationale for building only a two-layer model

was to explore whether a simple learning model trained with the Delta

Rule (Kruschke, 1992;Widrow&Hoff, 1960)—which is formally equiv-

alent to the traditional Rescorla-Wagner model (Danks, 2003; Gluck &

Bower, 1988)—could be used to explain these data. Similar to children,

we trained 16models (i.e., “participants”) per condition for both exper-

iments (i.e., 32 total model runs for Experiment 1 and 32 total model

runs for Experiment 2), and like the children, each model received two

trials. Each new participant began with a fresh set of small random

weights (sampled uniformly between ± 0.1). Finally, data were aggre-

gated over the responses of each model to allow us to fit the model’s

responses to participants’ count data (as shown in Figures 2 and 3).

The input layer for themodel consisted of four units for Experiment

1 (corresponding to the four objects) and five units for Experiment 2

(corresponding to the five objects), and the output layer consisted of

a single unit for the simulation of both experiments (corresponding to

the activationof themachine).Whenobjectwasplacedon themachine,

the activation value of its corresponding input unit was set to a value of

1 (and 0 otherwise). The input units could not take on any other values

beside 0 or 1. If an object that was a blicket was placed on themachine,

then the model was trained to turn on the single output unit (i.e., to

produce an activation of 1).

All simulations used a learning rate of 0.05 but no momentum.

Model weights were initialized to small random values (distribution

range=±0.1), and theoutputunits used sigmoidal or logistic activation

functions. The activation of the single output unit was interpreted as

the model’s confidence (or prediction) that a given object was a blicket

and could range between 0 and 1 due to the sigmoid activation func-

tion (unlike the input units, whose input values were “hard clamped” or

fixed).

Turning on the first three input units simulated placing objects A,

B, and C on the machine, and training the model to turn on the sin-

gle output unit corresponded to teaching the model that the machine

activated when objects A-C were placed on it. During the subsequent

A+ trials in Experiment 1 or the AB+ trials in Experiment 2, only the

first input unit (for the simulation of Experiment 1) or the first and

second input units (for the simulation of Experiment 2) were turned

on, but again the model’s task was to activate the single output unit.

The control trials in the Backwards Blocking condition were identical

to the experimental trials except that the fourth input unit (corre-

sponding to object D in Experiment 1) or the fourth and fifth input

units (corresponding to objects D and E in Experiment 2) were turned

on following the ABC+ trial. The experimental and control trials in

the Indirect Screening-Off condition were identical to the backwards

blocking experimental and control trials except that the model was

trained to turn off the single output unit (i.e., to produce an output

activation of 0) during the experimental and controls for the simula-

tions of Experiments 1 and 2. Each phase of the simulations—which

were shown twice to be consistent with the behavioral study—lasted

anywhere between 200 and 1000 epochs. This meant that one com-

plete simulation lasted anywhere between 800 (i.e., 200 × 4) and 4000

(i.e., 1000 × 4) epochs. Networks were trained for different numbers

of epochs to ensure that themodel-fit results were not idiosyncratic to

the precise number of training epochs. The best quantitative fit of this

model to the data in Experiments 1 and2 is also shownbelow inTable 3.

4.3 Results

To assess the quantitative fit of the predictions of the connectionist

and Bayesian models to the data, we computed the root mean square

(RMSE) and mean absolute error (MAE) between each model’s predic-

tions (for the connectionist model these were the average activation

of the single output unit in response to each object; for the Bayesian

model these were point estimates) and participants’ mean responses

to the objects across Experiments 1 and 2. One or both metrics have

been used in previous simulation studies to assess a model’s quantita-

tive fit to behavioral data (e.g., Bhat et al., 2022; Buss & Spencer, 2014;

Spencer et al., 2022; Steyvers et al., 2003; Stojnic et al., 2023). Lower

valuesoneachmetric indicatebettermodel fit. Table3above shows the

model fits for the different connectionist and Bayesian model instan-

tiations across both experiments and for different subsets of the data

(e.g., model fit to the data overall, to the backwards blocking data only,

etc.).

The main finding from Table 3 is that, although the Bayesian model

outperformed the connectionist model in 2 situations and exhibited

comparable performance in 1 situation, the connectionist model gen-

erally performed better than the Bayesian model (achieving better fits
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12 of 16 BENTON ET AL.

to the data in 7 of the 10 situations). These findings suggest that par-

ticipants may simultaneously be relying on associative processing and

Bayesian inference, even when there is a greater tendency to rely on

associative learning to reason about multiple potential causes. Stated

somewhat differently, these data neither clearly support the conclu-

sion that children rely exclusively on Bayesian inference to reason

about retrospective reasoning, nor do they permit the conclusion that

children rely exclusively on associative learning about such inferences.

Instead, these data support the conclusion that children weigh these

two cognitive mechanisms differently depending on the number of

potential causes about which they are asked to reason. Bayesian infer-

ence may be given more weight than associative learning when there

are a small number of potential causes (such as in Sobel et al., 2004),

but as the number of causes and the information processing demands

of the task increase, participants may give more weight to associative

learning (such as in the current study).

5 GENERAL DISCUSSION

The purpose of this study was to examine whether and how children

engage in retrospective reasoning under more strenuous information

processing demands, in which they must track the efficacy of more

than two objects. Experiment 1 indicated that when shown first that

three objects activated a machine together, and then that one of those

objects did so individually, the other two objects were judged as less

likely to be efficacious than analogous objects in a control condition.

When the individual object did not activate the machine on their own,

judgments of the efficacy of the other objects were not different from

the control condition. However, in Experiment 2 when two of the

three objects were revealed to activate or not activate the machine

together (following the ABC+ event), children did not show evidence

of retrospective inference in either type of trial.

We subsequently fit a Bayesian model and a connectionist model

to the data from both experiments. The Bayesian model did make

some qualitative predictions about retrospective reevaluation that

were seen in children’s responses in Experiment 1 but not Experiment

2. However, overall, the connectionist model tended to provide bet-

ter fits across the trials and experiments. In contrast to findings where

children only must reason about two objects, increasing the demand

characteristics of the experiment caused children to default to a more

associative strategy. Thiswasespecially true inExperiment2where the

informationprocessingdemandswereevengreater than inExperiment

1.

The value of the connectionist model is that it provided a plausible

account of thenature of children’s associative processing in the current

study. This can be seen perhaps most clearly when one considers how

the model arrived at its judgements for the objects in the control tri-

als in the Backwards Blocking condition in the first study. For example,

when the model saw three objects activate the machine together and

then a fourth do so independently, it arrived at its causal judgements

based on a relatively simple counting strategy. During the simulation

of this trial, when all four objects were first presented to the model,

the resulting difference at the output layer between the activation of

the single output unit and the predicted activation of that unit was

equivalent for all four objects. Thus, because the difference between

the observed and predicted activation of the output unit was equiva-

lent for all four objects, themodelmade equivalentweight adjustments

in sign and magnitude to the connections between each object and

the output unit. Crucially, these connections instantiated each object’s

association with the machine’s activation. As such, because objects A-

Dwere shownwith the “machine’s activation” (i.e., the output unit= 1)

an equal number of times, the strength of the associationbetweeneach

object and themachine’s activationwas equivalent. Given that the con-

nectionist model provided a better fit overall (and in various specific

places) than theBayesianmodel, it seems likely that childrenmight also

be relying on a similar associative-based counting procedure.

In contrast, the Bayesian model predicted a clear difference

between the causal effectiveness of the first three objects and the

fourth objects in the control trials. Because the fourth object was

placed on themachine by itself, its causal status as an effective object is

unambiguous and should be high. In contrast, when all children know

is that three objects activate the machine together, the only conclu-

sion they can come to is that at least one of the other three objects

has efficacy. A Bayesian model predicts that the probability that each

is efficacious is greater than the base rate, but not necessarily at ceil-

ing. Whereas the Bayesian model made qualitative predictions about

retrospective reevaluation in the experimental trials that were mostly

upheld (at least in Experiment 1), children made closer to ceiling-level

responses in the control trials (particularly in Experiment 2).

But what accounted for why children engaged in retrospective

reevaluation in Experiment 1 but not in Experiment 2? The cur-

rent study suggests that when tasks exceed children’s information-

processing abilities, theywill resort to less sophisticated strategies and

cognitive mechanisms such as associative learning (e.g., Cohen et al.,

2002), even though multiple processes (in this case, associative learn-

ing and Bayesian inference) may be simultaneously in operation but to

different degrees.

Before closing, some potential criticisms are worth noting. First, in

the present study, children’s reasoning overall was more consistent

with an associative model than one that is described by Bayesian infer-

ence. Yet, that does not mean that Bayesian models could not explain

the data under some circumstances. For instance, one of the pieces of

evidence for a Bayesian description of causal inference is that children

are sensitive to and make different inferences about the base rates of

causal properties (e.g., Griffiths et al., 2011; Sobel et al., 2004; Sobel &

Munro, 2009). Here, we did not present children with base rates prior

to themmaking an inference. Ifwewere tohavedone so, and in the case

where the base rate that any one object was a blicket was rare, chil-

drenmight have been cued not to use an associative counting strategy,

even given multiple potential causes. In other words, their inferences

about unambiguous data (i.e., individual objects that specifically do or

do not activate the machine) should be unchanged, but other infer-

ences about ambiguous datamight be different. Althoughwe can think

of modifications to the associative model presented here, which could

theoretically consider such base rate data, the simple connectionist
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model thatweused to simulate thedata herewouldbe less explanatory

than the Bayesianmodel we present.

A second criticism concerns the artificial nature of the paradigm

used here, which was necessitated by the COVID-19 pandemic. Test-

ing remotely on a computer screen may have introduced a level of

noise in the data that is fundamentally different than testing in per-

son with real objects. Future studies should replicate our study using

real objects and a real blicket machine. If such a study revealed that

participants performedmore normatively than associatively in person,

this would suggest that children’s normative inferences may not be as

robust as originally thought—it is present when tested in person but

nearly absent when tested on a computer. Such a finding would be

interesting regardless because it would add nuance to the literature on

children’s causal inferences.

A third criticism concerns the logic behind our model fitting. Our

model fits were based on aggregating a group of children’s yes/no

responses and fitting those averages to a model’s stochastic predic-

tions. Previous studies on children’s causal inferences used such an

approach. However, studies with adults asked them to make more

graded inferences (e.g., rate on a scale of 1–10 how likely a particu-

lar object caused the machine to activate). Given that we investigated

a slightly older sample than some other studies of retrospective rea-

soning in children, such a graded response measure could be used in

a reproduction of these studies. This could further help distinguish

between the qualitative predictions of each model and the quantita-

tive model fits. Relatedly, the logic behind our decision for the sample

size of the studies was based on prior studies that demonstrated chil-

dren’s reasoning that were better described by Bayesian models. The

choice of aggregating children’s yes/no responses might not have been

sufficiently powerful here to demonstrate some of the more subtle

inferences predicted by a Bayesian account.

A fourth potential criticism concerns the absence of developmental

change in children’s retrospective reevaluations: Children’s backwards

blocking and indirect screening-off inferences were unrelated to age

in both experiments. Although we failed to observe an age effect, the

current results do have developmental implications. If we are correct

that children resort tomore associative forms of processingwhen their

information-processing capacities are stretched, then these results

suggest that if younger children are tested in a replication of the

current study their inferences should be even more associative than

the 5- and 6-year-olds tested here. This is because younger children

presumably possess less robust information-processing abilities than

older children and thus should be more affected by the increase in

the number of objects used (relative to past studies on retrospective

reevaluation) than the 5- and 6-year-olds tested here. Conversely, if

children older than that tested here or even adults are tested in a repli-

cation of the current study, then not only should they be less affected

by the increase in the number of objects presumably because they

possess more information-processing abilities than the children tested

here, but their inferences should also better align with the predictions

of the Bayesianmodel than the associative model.

Although it remains to be seen whether these predictions will hold

in younger children, recent data by Benton and Rakison (2023) do

support these predictions: In a study that was similar to the current

one—including in the use of three and four objects—adults’ backwards

blocking inferences better aligned with Bayesian processes than asso-

ciative ones.When one considers this finding given the current results,

a clearer developmental picture emerges: They not only suggest that

cognitive processing evolves from a more associative approach in

younger children to a more Bayesian-oriented strategy in adults but

that this developmental shift may be supported by increases in under-

lying information-processing. Nonetheless, future research will want

to test younger children than that tested here to better assess the

viability of the current information-processing account.

5.1 Conclusion

This study constitutes one of the first systematic attempts to exam-

ine retrospective reasoning in human children in the context of

multiple potential causes. A longstanding view has been that the

cognitive mechanism by which people reason about causal events

is Bayesian inference rather than associative processes. The experi-

ments reported here support a different conclusion: Although children

possess both associative-based and more rational mechanisms for

reasoning about causes, they may rely more on associative learn-

ing than on Bayesian inference when their information processing is

taxed.
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