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An Associative-Learning Account of How Infants Learn About
Causal Action in Animates and Inanimates: A Critical Reexamination of

Four Classic Studies

Deon T. Benton
Department of Psychology and Human Development, Peabody College, Vanderbilt University

Considerable research shows that causal perception emerges between 6 and 10 months of age. Yet, because
this research tends to use artificial stimuli, it is unanswered how or through what mechanisms of
change human infants learn about the causal properties of real-world categories such as animate entities
and inanimate objects. One answer to this question is that this knowledge is innate (i.e., unlearned,
evolutionarily ancient, and possibly present at birth) and underpinned by core knowledge and core cognition.
An alternative perspective that is tested here through computer simulations is that infants acquire this
knowledge via domain-general associative learning. This article demonstrates that associative learning
alone—as instantiated in an artificial neural network—is sufficient to explain the data presented in four classic
infancy studies: Spelke et al. (1995), Saxe et al. (2005), Saxe et al. (2007), and Markson and Spelke (2006).
This work not only advances theoretical perspectives within developmental psychology but also has
implications for the design of artificial intelligence systems inspired by human cognitive development.

Public Significance Statement
A novel theoretical perspective is offered in the present article that can inform existing theories about
how infants learn about the causal properties of objects and entities in the real world.
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Causal perception—which can be defined broadly as the capacity
to “see” or apprehend real-world causal relations between objects
and entities—is a fundamental cognitive ability. This capacity not
only is what enables people to understand how the world works
around them and may underlie later causal reasoning but is an
ability that may underlie many early competencies such infants’
ostensible knowledge that unsupported objects fall (e.g., Needham
& Baillargeon, 1993) or that objects continue to exist when hidden
(Baillargeon, 1987; Needham & Baillargeon, 1993). There is now
considerable evidence that the ability to perceive causal relations
emerges between 6 and 10 months of age (e.g., Bélanger &
Desrochers, 2001; Oakes, 1994; Oakes & Cohen, 1990; cf.
Mascalzoni et al., 2013; Rakison & Krogh, 2012). For example, in
one of the first studies on this topic, Leslie and Keeble (1987)
habituated 7½-month-olds either to a direct-launching sequence or
to a delayed-launching sequence. In the direct-launching sequence,

a first object ostensibly caused a second object to move immediately
through direct, physical contact. The delayed-launching sequence
was like the direct-launching sequence except that the second object
began to move only after a short delay following contact from
the first object. Infants were then tested with the reversal of their
respective habituation sequences. Leslie and Keeble (1987) found
that infants habituated to the direct-launching sequence showed
greater dishabituation to the reversal of that sequence than infants
habituated to and tested on the reversal of the delayed-launching
sequence. Leslie and Keeble (1987) interpreted these findings to
mean that the ability to perceive cause-and-effect relations in simple
launching sequences emerges by 7½ months of age.

Despite considerable research on infant causal perception
of simple launching sequences, relatively little is known about
infants’ developing knowledge about the causal properties of
people and inanimate objects. For instance, it remains unresolved
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when and importantly how—or through what cognitive mecha-
nism of change—infants learn that people and objects possess
distinct causal properties. One way that people differ from
inanimate objects is that they can cause other people to act at a
distance, in the absence of physical contact. For example, if person
A notices that person B is in the path of oncoming traffic, person A
can tell person B to “watch out” to avoid getting hit by the vehicles;
person A need not physically move person B for person B to act,
although person A could have caused person B to act on contact. In
contrast, inanimate objects cannot cause action at a distance in
other objects. Instead, they require physical contact from other
objects and entities to act and move. This appreciation for the
difference between the causal properties of people and inanimate
objects is important because it not only underlies our knowledge of
how the world works but it may support our knowledge about how
best to interact with people and inanimate objects.
One prominent theory that attempted to address how infants learn

about the causal properties of people and objects is the core
knowledge perspective (e.g., Spelke, 2022; Spelke & Kinzler, 2007,
2009; see Carey, 2009, for a related core cognition account).
The crux of this account is that infants are born with a small number
of separable “core” systems. Two of these systems—the core system
for agents and the core system for objects—enable infants to know
how objects and people behave in the real world. For example,
the core knowledge system for agents enables infants to know that
agents are goal-directed, self-propelled, can move on nonlinear
trajectories, and can cause action at a distance in other agents. In
contrast, the core system for objects allows infants to know that
objects do not move in the absence of physical contact from other
objects or agents, are bounded and cohesive, and tend to move on
linear trajectories.
Early support for these systems was ostensibly garnered by

Spelke et al. (1995). This study investigated whether 7-month-old
infants understand that people, but not inanimate objects, can cause
action at a distance in other people. Infants were habituated to one of
two live events that involved real, three-dimensional objects or
people. In the People condition, a person entered the stage from the
left and traveled a short distance until it disappeared behind an
opaque screen that was located in the middle of the stage. A second,
initially half-covered person then emerged from behind the screen
and exited the stage to the right. The Inanimate Object condition was
identical to the first condition except that it used two inanimate
objects (i.e., a red box with a jagged top edge and a blue cylinder).
Infants then saw two test events without the screen three times in
alternation. In the Contact test event, the first person (or object)
moved toward and contacted the other person (or object) at the
center of the stage. In the No Contact test event, the first person
or object moved toward but ultimately stopped short of the other
person or object before the second object or person began to move.
Spelke et al. (1995) found that infants in the Inanimate Object
condition looked longer at the No Collision test event than at the
Collision test event. In contrast, infants in the People condition
looked equally long at both test events. These and other findings
were interpreted to mean that infants possess core knowledge
systems for people and objects. On this account, infants “know”
(hence, core knowledge) that people, but not inanimate objects,
can cause other people to move at a distance.
Although this theoretical account can explain infants’ looking

patterns in Spelke et al. (1995), it is limited in two notable ways.

First, although the core knowledge perspective assumes that
infants possess innate—that is, evolutionarily ancient, unlearned,
and possibly present from birth (e.g., Carey, 2009; Spelke,
2022)—causal knowledge about people and objects, Spelke et al.
(1995) tested 7-month-olds. This is problematic because infants’
pattern of looking could have been based on extensive, real-world
experience with people and objects rather than on innate causal
knowledge about people and objects. Second, it is not necessary
to assume that infants are born with innate knowledge about
people and objects to explain the looking behavior of infants in
Spelke et al. (1995). Such knowledgemay instead have derived from
an associative-learning mechanism that links salient perceptual,
surface features (e.g., eyes or legs) with perceptually distinct kinds
of causal events such as events in which things with certain
perceptual or surface features (e.g., eyes, legs, arms, heads, all
features that people possess) move in the absence or presence of
physical contact and events in which things with certain other
features (e.g., things without legs, something that defines most
objects) move only in the presence of contact.

Here, I extend this second proposal. In particular, I present—and
then test through a series of computer simulations—an alternative
proposal for the cognitive mechanism through which infants learn
about the causal properties of people and objects. This mechanism
begins when infants first notice that a link exists between certain
perceptual features that are available in the perceptual array and
the different kinds of low-level, perceptually based causal events
mentioned above. To avoid any confusions about how I am assuming
infants represent these different kinds of events, a critical note is
worth making here. Unlike the core knowledge account—which
assumes that infants go beyond the low-level, perceptually based
descriptions of the causal events to represent them abstractly as two
conceptually distinct kinds of causal events (e.g., the concept action-
at-a-distance causality vs. the concept contact causality)—the
present account makes no such assumption. Instead, my view is that
in the same way that infants with normal vision can perceive, see, or
detect objects and entities in the world without necessary recourse to
conceptually rich interpretations of those things (e.g., infants might
notice that there is a cylindrical-shaped object in the corner of the
roomwithout knowing that the object is from the conceptual category
sphere), they see people moving at a distance and people or
objects moving following physical contact in terms of low-level,
perceptually based, kinematic descriptions of those events. Stated
plainly, the present account does not assume that infants use
abstract, conceptually rich knowledge to interpret low-level causal
events—infants simply perceive the events as they are without
recourse to conceptually rich, abstract inferences.

Infantsmay come to notice and then encode links between different
surface features and different low-level, kinematic descriptions of
causal action upon noticing that some perceptual features tend to
co-occur with different kinds of causal action across time and space.
For example, infants may learn that perceptual features whose
configuration is in the shape of a canonical human leg (although it
need not be legs, and the present series of simulations go to great pains
to be agnostic about the exact causally relevant feature or features that
participate in these links) “go with” causal action at a distance as well
as motion on contact based on seeing events in which people cause
other people tomove both at a distance and on contact. Infants may be
attuned to these relations in the first place—that is, they may notice
that some feature or small number of features “go with” two kinds of
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causal action—based on an innate or early emerging orienting bias to
attend to movement over nonmovement (e.g., Slater, 1989), among
other potentially relevant attention biases. This act of noticing that
action following contact and motion at a distance tends to include
some causally relevant, low-level perceptual feature of animate
entities may serve to establish a nascent link between that feature and
the two kinds of perceptually defined causal action, which becomes
ever strengthened as the components of the relation are repeatedly
experienced together. Although again I remain agnostic about the
precise feature or features that infants come to associate with different
kinds of causal action (the feature may be legs, but it may be some
other feature), there is good reason to think that the feature may well
be legs (though this issue should be examined more closely in future
research). There are two reasons for this. First, at birth infants’ visual
acuity is 20/600 and does not reach adult levels until they are
approximately 6 months of age (e.g., Ayzenberg & Behrmann, 2024).
This means that this level of visual acuity may be sufficient for
detecting and encoding large visual features whose overall shape
is relatively simple such as the configuration of a person’s arms or
legs—especially when those features draw infants’ attention by
moving (e.g., Rakison & Poulin-Dubois, 2001, 2002)—but
insufficient for encoding small, detailed visual features such as a
person’s eyes or their individual fingers or toes. Second and relatedly,
when a person walks from one place to the next, not only does their
entire body move (i.e., there is globalmovement of the entire entity),
but there is also concurrent and synchronized local movement of
their legs (e.g., flexing, extending, swinging, etc.). Such “double
motion”—that is, movement of the entire body with movement of the
legs—perhaps combined with poor visual acuity may heighten the
salience of legs (or arms) relative to other finer and more detailed
body parts. In turn, this may allow infants to form links between legs
and different kinds of causal action rather than between some other
body part and those same actions.
Whatever the feature is that participates in the relevant causal

relation, the consequence of this mechanism is that the presence of
one of the features alone will come to trigger an expectation for
the other feature (e.g., seeing causal action at a distance), even if the
other feature is not physically present. This means that if one (e.g.,
entities with legs) but not both (e.g., entities with legs and causal
action at a distance) of the features is physically present, this may
cause infants to show heightened or increased looking, as if to
expect the second feature (i.e., things with leglike structures) given
the first feature (i.e., causal action at a distance). This account may
well explain why and crucially how infants in Spelke et al. (1995)
came to look longer at the No Collision test event relative to
the Collision test event in the Inanimate Object condition but not in
the People condition; the No Collision event (i.e., causal action at a
distance) in the Inanimate Object condition triggered an expectation
for objects with certain low-level features that ultimately went unmet.

A Computational Instantiation of the Present
Associative-Learning Account: Four Case Studies

The goals of the present simulation studies were twofold. The
first goal was to implement the present associative-learning account
in an artificial neural network to determine whether it was sufficient
to capture infants’ looking behavior in Spelke et al. (1995). The
second goal was to examine the explanatory breadth of the present
associative-learning account. Specifically, I examined whether this

account could explain infants’ looking behaviors in three other
classic studies in the infancy literature. The second study that I
focused on in Simulation 2 was Saxe et al. (2005). These authors
examined whether infants understand that agents, but not inanimate
objects, can cause ballistic motion in other objects. Ten- and
12-month-old infants were habituated to an event in which a
beanbag was thrown, from either the left or right side of the stage,
over a short wall—the trajectory that the beanbag took as it flew over
the barrier is what is meant by ballistic motion. At test a live hand (or
a toy truck) appeared from the same side from which the beanbag
emerged (Same Side test trial) or from the opposite side from which
the beanbag emerged (Different Side test trial), and the experimenter
measured the amount of time that infants looked at both events.
The results indicated that 10- (Experiment 3) and 12-month-old
(Experiment 1) infants looked longer when a hand emerged from the
opposite side from which the beanbag emerged than when the hand
emerged from the same side from which the beanbag emerged.
In contrast, 12-month-old infants looked equally long at the Same
Side and Different Side test trials when a toy truck replaced the
human hand.

The third study I focused on was Saxe et al. (2007). This study
examined whether 7- to 10-month-old infants understood that
animate entities, but not inanimate objects, could cause ballistic
motion in other things. Infants were habituated to events in which
one beanbag was thrown from behind a screen located on the right
side of the stage and another beanbag was thrown from behind a
screen located on the left side of the stage. At test the two screens
were lowered to reveal what was behind them. Behind one screen
(e.g., the right screen) was a human hand (Experiment 1) or a
puppet (Experiment 2), and behind the other screen (e.g., the left
screen) was a toy truck. The screens then rotated back up to
occlude the human hand (or puppet) and the toy truck, and a
beanbag was once again thrown from behind the right screen on
half of the test trials and from behind the left screen on the
remaining half of the trials. Saxe et al. (2007) found that infants
looked longer when the beanbag emerged from the side on which
the train was located (i.e., the unexpected test trials) than when the
beanbag emerged from the side on which the human hand or novel
puppet was located.

The fourth and final study I focused on was Markson and Spelke
(2006). This study examined whether 7-month-olds could quickly
learn about the self-propelled motion of objects. Infants were
habituated to events in which a wind-up toy (i.e., a first toy animal)
moved on its own across a stage as well as events in which a second
wind-up toy (i.e., a second toy animal) was made to move across
the stage by a human hand. Infants were then shown a test event
in which the self-propelled object and the hand-generated object,
now motionless, were positioned next to each other on the stage.
Markson and Spelke (2006) reasoned that if infants could quickly
learn that a novel toy is self-propelled, then infants should look
longer at the previously self-propelled object than at the previously
hand-generated object, as if to expect it to continue moving.
Across six experiments, Markson and Spelke (2006) not only
found that infants looked longer at the previously self-propelled
object than at the previously hand-generated toy, but they found
that this looking pattern persisted over a brief delay (Experiment
2). In addition, infants were at chance in their looking to both sides
of the stage when the toy animals were either replaced with
amorphous blobs (Experiment 3) or toy trucks (Experiment 5).
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Finally, Markson and Spelke (2006) showed that these latter
findings were not due to infants’ inability to distinguish between the
amorphous blobs (Experiment 4) or the toy trucks (Experiment 6).
The rationale for focusing on these studies was that data from

them have been interpreted as providing support for core knowledge
systems (e.g., Spelke, 2022; Spelke &Kinzler, 2007, 2009) and core
cognition (e.g., Carey, 2009). Here I will show that the present
associative-learning account as implemented in an artificial neural
network can capture the data in these studies. It is worth noting,
however, that although the present simulations do demonstrate that
associative learning is sufficient to explain how infants learn about
the causal action of people and inanimate objects and that core
knowledge or cognition is not necessary (for a similar associative-
learning account of language learning, see McMurray et al., 2012),
they do not (and indeed cannot) show that infants do not possess
sophisticated, innate concepts or specialized learning processes. The
answer to the question about what mechanism infants and children
actually use to learn about the causal properties of people and objects
ultimately can only be determined with behavioral experiments,
which, ideally, would be designed to test the predictions of competing
theoretical accounts.
Before proceeding, a brief note is worth making. Although the

current simulations focus on a subset of studies by prominent
developmental scientists, the simulations were designed to address
a much broader point: Domain-general associative learning may be
sufficient to explain the emergence of many phenomena, including
the emergence of causal learning in infants and young children
(the topic of this article), without recourse to innate, content-rich
knowledge or specialized learning mechanisms, skeletal systems, or
Fodorian-like modules.

Simulation 1a: Spelke et al. (1995)

Simulation 1a had two aims. First, it examinedwhether associative
learning alone could account for 7-month-old infants’ looking
behavior in the People and Object conditions in Spelke et al. (1995).
Second, it was designed to determine what testable predictions the
network makes when “younger networks” are tested.

Method

Network Architecture

I used a three-layer, feedforward, autoassociative simple-recurrent
network across all simulations (e.g., Elman, 1990; Mareschal et al.,
2000). The model was trained using backpropagation in cross-
entropy error (e.g., Rumelhart et al., 1986). The activations of the
output units were set according to a sigmoid activation function,
whereas the activations of the hidden units were set according to a
rectified linear unit activation function to prevent the gradients from
vanishing as error was backpropagated across layers. The learning
rate, momentum, weight decay, and number of hidden units were set
to 0.06, 0.9, 0.0001, and 20, respectively, for the older networks,
whereas they were set to 0.02, 0.9, 0.001, and 10, respectively, for the
younger networks. The values to which these parameters were set is
consistent with past developmental connectionist modeling research
(e.g., Benton et al., 2021; Mareschal & French, 2000; Rakison &
Benton, 2019; Westermann & Mareschal, 2004). Finally, Gaussian
noise was added to the output activations of the hidden and output

units to reflect the fact that infants’ learning and processing tends to
be a noisy function of the input they receive from the environment.
The value of this parameter was set to 0.1 (M = 0, SD = 0.1) for
the older networks and 1 (M = 0, SD = 1) for the younger networks
to reflect the fact that learning and processing in older infants is
presumably less noisy than in younger infants. Together, these
parameters implemented a very simplemodel of age and development
that is consistent with previous connectionist simulation studies
(e.g., Benton et al., 2021; Benton & Lapan, 2022; Rakison &
Lupyan, 2008). Weights were initialized to small random values
(sampled uniformly between ±0.1) for all networks regardless of
developmental age.

The model consisted of three layers (Figure 1). The input and
output layer consisted of five “banks” of units, and the hidden layer
consisted of a single group of “hidden” units. Two of the input banks
of units—each of which consisted of 40 units—were used to
represent the animate entities and inanimate objects, with one
animate entity or inanimate object being presented on the left side of
the network and the other animate entity or inanimate object being
presented on the right side of the network. People and objects were
represented in the model as orthogonal patterns of activity; that is,
a single unit was used to represent a particular person or object. This
ensured that the network’s responses at test were based on learned
associations between particular features and different types of causal
action rather than on the particular features of a given person or
object. Given that the similarity between any two people, two
objects, or an object and a person was minimized in this (as well as
in the following) simulations (due to the use of orthogonal patterns
of activation), the network could not rely on the particular
representation of an object or person to encode the relevant
relations. Crucially, people and objects were presented in both banks
of units to simulate the fact that two people (or objects) were present
at the same time in the study by Spelke et al. (1995) and the fact that
causing action through contact or action at a distance requires that
two entities or objects be present.

In addition to these banks of units, two other banks of units
represented whether a given person or object possessed animate
features (i.e., the Objects Feature group in Figure 1). Note again that
I am agnostic about which particular feature infants associate with
different kinds of action and am using the term “animate feature”
merely as a stand-in for whatever animate or inanimate feature is
linked to different kinds of causal action in the real world. Each bank
consisted of two units. If the first unit in this bank was set to “on”
(i.e., its value clamped to 1) and the second unit in this bank was set
to “off” (i.e., its value clamped to 0), this indicated that the person or
object to which this bank of units corresponded possessed inanimate
object features. However, if the first unit in this bank was set to “off”
and the second unit set to “on,” this indicated that the person or
object to which this bank of units corresponded possessed animate
object features. These four banks of units instantiated the
autoassociative component of the model. As is true for all
autoassociative models, the network’s task was to recreate the
pattern of activity presented to the input groups along the
corresponding output groups through an intermediate group of
hidden units. Given that the number of hidden units in the hidden layer
was necessarily smaller than that in either the input or output layers,
this forced the model to develop a more compact representation of the
input that was sufficiently reliable such that when expanded the
network reproduced the pattern of activation that was presented as
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input to the model along the corresponding groups in the output layer
(e.g., Mareschal et al., 2000).
The final bank of units represented the “motion path” (i.e., the

movement and the location in network space) of a given object.
Although two groups of units were used to represent two different
animate entities or inanimate objects on the network’s left and right
sides, a single motion path was used. This meant that on each time
step, a single bit in the motion layer was active according to the
current position of the first or second object. The networks’ task was
to predict the location of a given object (represented by a single unit)
at the next time step. Activity presented before the midpoint of this
path (i.e., before the fifth bit of the motion path) represented the
motion of the animate entity or inanimate object on the left side of
the network; activity presented at and after this midpoint encoded
the motion of the animate or inanimate on the right side.
Finally, the hidden layer was connected to a corresponding group

of “context” units, and these units in turn were connected to the
hidden layer. These context units encoded the pattern of activity that
was presented along the hidden layer at the immediately preceding

previous time step and, functionally, served as another input group.
This “recurrent” connectivity between the hidden and context layers
provided the model with a rudimentary form of memory such that it
was not only able to remember information from the past, but it was
able to use that information (via its connections with the hidden
layer) to help the network better predict information at the current
moment in time.

Training

Pretraining

Older networks received 1,500 epochs of pretraining experience,
whereas younger networks received 500 epochs of pretraining
experience. The pretraining phase corresponded to the “real-world”
experience with which infants presumably entered Spelke et al.’s
(1995) study. The difference in the amount of pretraining experience
between the older and younger networks reflected the fact that older
infants necessarily enter experiments with more experience than

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 1
Schematic of an Untrained Model Used to Simulate Older Networks

Note. The model architecture for younger networks was similar to that for the older models except that
the number of units in the hidden layer was reduced to 10. The colored borders that encircle each output
unit correspond to the target for that unit. Black borders correspond to targets of “0” (i.e., the unit should
be “off”). White borders correspond to targets of “1” (i.e., the unit should be “on”). The size of the colored
region within the borders corresponds to the actual activation value of that unit. Larger inner regions
correspond to greater activations. Darker colored inner regions for the output units correspond to
activation values ≤0.5, whereas lighter colored inner regions correspond to activation values >0.5. For
the hidden units, darker colored inner regions correspond to activation values<1, whereas lighter colored
inner regions correspond to activation values ≥1. This difference stems from the fact that the activities of
the output units are set by a logistic function, whereas the activities of the hidden units are set by a rectified
linear unit activation function. See the online article for the color version of this figure.
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younger infants. Crucially, there were three kinds of events that
networks experienced during this phase. In one event (N = 8),
objects with visible animate surface features caused other objects
with visible animate surface features to move in a way that an
adult would describe as objects causing other objects to move at
a distance. Such action was instantiated in the following way
(though see Figure 2 for a visual depiction of this event as it
unfolded over time).
At time t = 1, the activation value of the first (or leftmost) unit in

the motion group in the input layer was set to 1 (the activation values
of the remaining units were set to 0), and the network’s task was
to activate the second unit (from the left) at time t = 2 in the
corresponding motion group in the output layer. At time t = 2, the
activation value of the second input unit in the motion group was set
to 1 (all other values were set to 0), and the network’s task was to
turn on the third output unit (from the left) in the corresponding
output group. At time t = 3, the third unit (from the left) was turned
on, but this time the network had to predict that the second
object would begin to move by turning on the sixth unit in the
corresponding motion output group. That there was no intermediate
movement between the third and sixth units simulated a situation in
which a second object begins to move in the absence of contact from
a first object. At time t= 4, the activation of the sixth input unit in the
motion group was set to 1, and the network had to predict that the
second object would continue moving by turning on the seventh unit

in the motion group at the output layer. At time t = 5, the activation
value of the seventh motion input unit was set to 1, and the network
had to activate the eighth output unit in the motion output group.
At this point in training, at time t = 6, the second object’s motion
“wrapped around” the motion vector such that the eighth motion
input unit was activated, and the network had to reactivate the first
motion input unit. Finally, at time t = 7, the first motion input unit
was set to 1, and the network’s job was to reactivate the second
motion unit in the model’s output layer.

In another event (N = 8), one object with animate features caused
another object with animate features to move in a way that an adult
would describe spatiotemporally and kinematically as movement
following direct, physical contact. This event was similar to the first
event except that the first animate entity contacted the second
animate entity (i.e., the fourth and fifth units of themotion layer were
sequentially activated in a manner similar to the activation of the
other units). The final set of events (N = 8) were identical to the
contact event that included objects with animate features except that
the objects with animate features were replaced with objects without
animate features or objects with inanimate features. Crucially, this
pretraining phase instantiated the notion that objects with animate
features can engage in multiple forms of spatiotemporally and
kinematically defined causality, whereas objects with inanimate
features tend to engage in a single form of spatiotemporally defined
movement (i.e., contact causality).
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Figure 2
An Example of the Input-Target Patterns Presented to the Model for the “Action-at-a-Distance” Events That
Involved Objects With Animate Surface Features

Note. Each row corresponds to a particular point in time.
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One potential criticism of the simulation as I have described it to
this point is that the relations that networks were trained on during
the pretraining phase were considerably “purer” than those that
infants might experience in the real world and thus “easier” to learn.
For example, in the model networks learned that things with
“animate features” engaged in two different kinds of causal action,
whereas things with “inanimate features” always engaged in a single
action. Such experience is likely at odds with infants’ real-world
experiences with objects. For example, although generally it is the
case that inanimate objects are caused to move by other inanimate
objects (as well as by animate entities), a subset of infants’ real-
world experience with objects arguably also includes unaided object
movement. Examples of this are unaided movement by vehicles,
toys, and dolls, among other things. What this means is that
compared to the current model in which animate and inanimate
features are uniquely diagnostic of animacy and inanimacy,
respectively, in the real-world animate entities and inanimate objects
cannot be distinguished so easily. A model that is faithful to the real-
world experiences of infants would need to determine what role, if
any, different amounts of experience with atypical object action (e.g.,
objects moving unaided) have on the networks’ ability to learn about
the causal properties of animates and inanimates. To address this
issue and to increase the ecological validity of the current series of
simulations, in this (and in most of the following) simulation,
the frequency with which things with “inanimate object features”
cause other inanimate objects to move at a distance is varied.
The frequencies ranged from 50% to 100% in increments of 10.
To illustrate what a given frequency means, consider 60%. This
frequency means that 60% of the time inanimate objects were caused
to move; 40% of the time those same objects moved unaided. In
contrast, a frequency of 70% means that 70% of the time inanimate
objects were caused to move, whereas the remaining 30% of the time
they moved unaided.

Habituation

Similar to Spelke et al. (1995), all networks—regardless of
“age”—were randomly assigned either to the Objects (Nolder = 20;
Nyounger = 20) condition or to the People condition (Nolder = 20;
Nyounger = 20). The habituation events were identical to the
pretraining events except that motion was absent during them and a
new set of unrelated objects with animate features or objects without
animate features (depending on the condition to which a given
network was assigned) were used. I chose not to model motion
during this phase to simulate the fact that infants could not determine
whether a contact or no contact event was being shown during
habituation in Spelke et al. (1995). This was because in the original
study, a central screen obscured the movement of the objects. Given
that motion was absent during this phase, networks simply had to
reproduce the pattern of activity in each of the input groups along
the corresponding output groups. The habituation phase lasted four
epochs; this value was used across all simulations.

Testing

Following habituation, networks were tested on two Contact and
two No Contact test events, and networks’ average response to the
test events was assessed. I used as a measure of “looking time”
network cross-entropy error (e.g., Sirois & Mareschal, 2002). Error

was computed over all the output groups. Larger errors indicate a
larger discrepancy between what the network observes (the pattern
of activity across the output layer) and what it expects (the target
information across the output layer). The contact events were
identical to the pretraining contact events, and the no contact events
were identical to the pretraining action-at-a-distance events.

Results

Figure 3 shows networks’ mean “looking times” to the Contact
and No Contact test events for older networks assigned to the
Objects and People condition. Figure 4 shows the corresponding
data for the younger models. Before discussing the key findings, it is
worth mentioning that formal inferential statistics were not used in
any of the simulations reported in this article (although they were
included in the Supplemental Materials for completeness). The main
reason for this is that the simulations reported here used a real-
valued probability measure to operationalize looking time. Such a
measure inherently limits the range of possible “looking times” to
values that fall between 0 and 1 (due to the use of cross-entropy error
in the simulations). The consequence of this constrained measure-
ment range is that network looking time often exhibits reduced
variability compared to what is observed in studies with human
infants. Given that the same restrictions presumably do not apply to
infants, infant looking time should exhibit greater variability than
that of models, thereby enabling smaller differences to be reliable
here but not in the behavioral studies on which the current
simulations were based. The presence of a reliable difference in
the current context, in contrast to the absence of one in the
corresponding behavioral studies, should not be interpreted to mean
that the models failed to capture key behavioral findings. Instead,
such a difference should be considered an artifact of the error measure
used. The following “analyses” eschewed this issue altogether by
focusing instead on whether the qualitative pattern of results obtained
by the model matched that observed in infants (for a similar analysis
approach, see Mareschal et al., 2000; Mareschal & Shultz, 1999;
McClelland & Thompson, 2007; Plaut & Vande Velde, 2017).

As can be seen in Figure 3, older networks assigned to the Object
condition looked longer at No Contact test event than at the Contact
test event. In contrast, networks assigned to the People condition
looked about equally at the Contact and No Contact test events. Both
results held for all frequencies except for the 50% frequency, in
which 50% of the time inanimate objects moved following contact
and the remaining 50% of the time they moved unaided. Crucially,
these results replicated those found by Spelke et al. (1995). An
interesting facet of these data is that the difference in looking time to
the No Collision and Collision test events for networks assigned
either to the Object condition or to the People condition decreases as
the network’s experience with atypical object action (i.e., things
with inanimate features causing other things with inanimate features
to move at a distance) increases. The basis for this is straightforward:
As networks’ experience with atypical object action increases, their
relative experience with typical people action (i.e., things with
“animate features” causing both action at a distance and on contact)
decreases. It turns out that this general pattern (as well as the
explanation for it) applies to remaining simulations as well.

A different pattern of results emerged for the younger models, as
can be seen in Figure 4: These models looked about equally at both
test events across conditions and frequencies, although there were
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places where the younger models showed a slight preference for the
No Collision test events compared to the Collision test events.
Crucially, this latter result was not specific to the Object condition; it
applied consistently to at least three of the four conditions.

Discussion

Simulation 1a replicated infants’ looking responses in Spelke
et al. (1995). Networks looked longer when an object that possessed
inanimate features moved in the absence of contact than when
it moved following contact, whereas they looked about equally long
when an entity that possessed animate features moved in the
presence and absence of physical contact from another entity with
animate features. Crucially, this result largely did not depend on
how frequently inanimate objects engaged in atypical action (e.g.,
causing other inanimate objects to move at a distance). This result
is significant because it suggests that the conclusion that infants’
causal knowledge about people and inanimate objects is unlearned
may be premature. The current modeling results demonstrate that
domain-general associative learning is sufficient to explain how
infants learn about the causal properties of people and objects. It is
worth noting that there was nothing intrinsic to the training
examples used here that distinguished objects with animate features
from the objects with inanimate features. As is true of simulations
like this one (e.g., Rogers & McClelland, 2004), an object’s
“meaning” is determined by the associative relations into which it
enters rather than by something abstract about the object. In terms of
the present simulation, the networks’ responses at test were due to
learned associations between particular visible, low-level, surface

features (available to any low-level parsing routine) and particular
low-level, perceptual-based, kinematic depictions of different kinds of
causal action.

The present simulation also extended Spelke et al. (1995) by
making a series of testable predictions. The first is that infants
younger than those tested in Spelke et al. (1995)—although I make
no claims about how much younger—should be at chance in their
looking to the Contact and No Contact test events regardless of the
condition to which they are assigned. A second prediction that the
network makes, which should also be tested in future research, is that
there should be a developmental progression in infants’ knowledge
about the causal actions of people and objects: Older but not younger
infants should show the same pattern of looking as infants in Spelke et
al. (1995). Crucially, this is not a prediction that the core knowledge
perspective would make. This is because infants’ causal knowledge
about people and objects is not learned and, as such, should not
undergo a developmental progression. Together, this simulation
shows that domain-general associative learning can explain infants’
developing knowledge about people and object causal action.

Before presenting the next series of simulations that assess the
explanatory breadth of the present associative-learning account,
it was important to address two potential objections to the current
simulations. A first potential objection is that the learning task faced
by the current model differs in important ways from that faced
by infants in the real world. For example, in the real world, infants
must discover which of several co-occurring features is the one that
is causally linked to different kinds of actions before they can link
that feature (or a small number of features), perhaps via associative
learning, with those different kinds of actions. In contrast, in the
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Figure 3
“Older” Networks’Mean “Looking Time” (i.e., Cross-Entropy Error) to the Contact and No Contact Test Events
Across Conditions

Note. See the online article for the color version of this figure.
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current simulation, the model was not required to discover these
features before associating them with different actions. Instead,
these features were merely given to the model. This is presumably an
easier task for the model than that encountered in the real world by
infants, which could impact the validity of the current model.
A complete account of how infants learn about the causal properties
of people and object must therefore explain how infants discover
those properties and features in the first place. One may argue that
the former of these tasks—namely, discovering the relevant causal
properties—requires a distinct, domain-specific learning mechanism.
However, as Simulation 1b will demonstrate, these features can be
discovered within an associative-learning mechanism if one assumes
that the to-be-extracted features are the perceptually more salient
ones; a separate mechanism is not required. As was discussed in
the Introduction, this view is supported by substantial research
demonstrating that infants possess at birth perceptual or attention
biases that direct their attention to some objects in the perceptual
array and away from other aspects in that same array (e.g., Rakison&
Lupyan, 2008; Scott & Arcaro, 2023). It is generally assumed that
what governs this orienting response is the salience of the various
objects in the array; infants’ attention will be “pulled” toward the
more salient aspects of the array presumably because these features
“pop out” to infants. This also means that if the salience of some
aspect of the world is increased, then the salience of other, unattended
aspects of the world will be decreased. The goal of Simulation 1bwas
to demonstrate that when some features are more salient than others,
an associative-learning mechanism has little difficulty “discovering”
the more salient of those features and linking them with different
kinds of action. To simplify the simulations and increase their
interpretability, this idea was instantiated with just two features; one

of these features was more salient than the other. However, there is
no reason to think that the same principle that enables the network
to discover the causally relevant feature does not also play out in the
real world to allow infants to discover the same features. Given that
the larger set of simulations presented here were not designed to
address this issue—that is, how infants discover the causally relevant
features—but rather to instantiate the notion that infants learn about
the causal properties of people and objects via associative learning
(once the critical features have been extracted), this issue will only be
explored in Simulation 1b.

A second potential objection is that because “people” were
defined in the current simulations as entities with animate features
(i.e., the animate “bit”was turned on in the Animate Features group)
and “objects” were defined as things with inanimate features (i.e.,
the inanimate bit was turned on in the same group), it was neither
possible to know how the model would treat anomalous or “hybrid”
objects such as objects with animate features or people with
inanimate features, nor was it possible to know how the network
would respond to unmodified people or objects following “real-
world” (i.e., pretraining) experience with hybrid or modified objects.
Both of these are issues that stem from the fact that a single, two-unit
group, which was used to represent items with animate features
or items with inanimate features, was used in Simulation 1a. Yet,
assessing how networks respond to these modified stimuli as well as
how training on them impacts responding to unmodified stimuli can
help further to tease apart core knowledge from associative-learning
accounts. If infants’ causal knowledge about people and objects
is based on rich, abstract knowledge about people rather than on
the perceptual features of objects as the core knowledge account
assumes, then they should treat a person with inanimate features as
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Figure 4
“Younger” Networks’ Mean “Looking Time” (i.e., Cross-Entropy Error) to the Contact and No Contact Test
Events for Networks Assigned to the Objects and People Conditions

Note. See the online article for the color version of this figure.
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a person and an object with animate features as an object. However,
if infants’ causal knowledge about people and objects is based on
learned associations between low-level, perceptual-based features
and different kinds of causal action as the present associative-
learning account assumes, then their responses to hybrid objects
presumably should be affected by the features that those objects
possess.
Simulation 1c was designed to determine how a domain-general

associative-learning mechanism responds when presented with
unmodified and modified stimuli following training to both kinds
of stimuli. These responses and behavior of the model can then be
used as the basis for future behavioral research. This simulation
was identical to Simulation 1b with two key differences. A first
difference is that networks’ pretraining experience not only included
experience with unmodified people (i.e., entities with salient and
less salient animate features) and unmodified objects (i.e., objects
with salient and less salient inanimate features) but experience with
modified objects (i.e., objects with salient inanimate features and
less salient animate features). Crucially, both kinds of objects (i.e.,
unmodified and modified objects) only caused other objects of the
same kind to act through contact; it was not the case that modified
objects caused other modified objects to act at a distance. Events in
which objects caused other objects to act at a distance were not
included here for two reasons. First, these events were included
in Simulation 1a. Second and most importantly, it was important
to determine whether experience with modified objects affected
networks’ subsequent processing of unmodified and modified
objects and people independent of experience with events in which
objects cause action in other objects in the absence of physical
contact.
The rationale for presenting the network with modified objects

but not modified people during the pretraining phase was that infants
presumably do not encounter people with object parts appended
to them in the real world. However, their real-world encounters
with objects probably do involve some amount of experience with
modified objects (i.e., objects with animate features in the real
world; e.g., a Mr. Potato Head doll). Given that it was unclear how
much real-world experience infants have with modified objects, as
in Simulation 1 the frequency with which networks experienced
them was varied from 50% to 100% in increments of 10. Here,
a frequency of, say, 80% means that 80% of the time the network
experienced unmodified objects or objects with salient inanimate
features; 20% of the time networks experience modified objects or
objects that possessed salient inanimate features and less salient
animate features. Because networks in this simulation could encounter
modified objects during training and modified objects and people
during test, it is worth being clear on what determines an item’s true or
“ontological” status. Here, an item was considered an object if it
possessed a salient inanimate feature, whereas an itemwas considered
a person if it possessed a salient animate feature. Thus, a modified
object is an object with salient inanimate features and less salient
animate features. In contrast, a modified person is an entity with
salient animate features and less salient inanimate features. It is
worth noting here that there is an implicit assumption that the
animacy features of modified objects are less salient than those of
unmodified people. As discussed in the Introduction, this difference
may stem from the fact that the animacy features on objects tend to
be smaller and finer compared to those on people, and thus may
capture infants’ attention less due to their initial poor visual acuity.

Nonetheless, this issue should be explored further in future
simulation research.

A second difference is that unlike Simulations 1a and 1b, networks
in Simulation 1c were assigned to one of four conditions following
pretraining experience: People, Objects, People with Inanimate
Features, and Objects with Animate Features. By assigning networks
to one of the four conditions, it was possible to determine to what
extent network’s “real-world” experience with unmodified people
and objects as well as modified objects influenced their subsequent
responses to these different kinds of things at test.

Simulation 1b: Discovering Causally Relevant Features

This simulation examined whether an associative-learning
mechanism could discover which of two features is causally relevant
when one of the features is more salient than the other.

Method, Training, and Testing

Network Architecture

Simulation 1b was identical to Simulation 1a except that
two additional banks of “feature” units were used to implement
the fact that people and objects possessed salient and less or
nonsalient features. The first bank of units corresponded to salient
features; the second bank of units corresponded to nonsalient
features. Both banks of units used the same pattern of activation.
Thus, if the first unit in this bank was set to “on” and the second unit
set to “off,” not only did this indicate the presence of inanimate
object features, but this pattern of activation was used for the bank of
units that coded for salient features and for the bank of units that
coded for nonsalient features. In contrast, if the first unit in this
bank was set to “off” and the second unit to “on,” this indicated the
presence of animate object features, and this pattern of activation
was used for the salient and nonsalient banks of feature units.
Crucially, to decrease the salience of the nonsalient features relative
to the salient ones, thereby modeling attention biases, the learning
rate and weight decay of weights from the nonsalient features to
the hidden layer and the weights from the hidden layer to the
corresponding output group of nonsalient features were set,
respectively, to 1 × 10−6 and 0.375. Used in this way, the learning
rate can be conceptualized as the speed at which the network learns
that two (or more) features are correlated; the weight decay can be
conceptualized as a kind of “pressure” that keeps those learned
associations from growing too big, thereby outcompeting the salient
animate features and the “pull” that salient features might exert on
attention. Although these values were chosen somewhat arbitrarily,
this approach to modeling attention biases as well as the interpretation
of the learning rate and weight decay is well motivated by and
consistent with past simulation studies (e.g., Lupyan & Rakison,
2006; Rakison & Lupyan, 2008; Rescorla & Wagner, 1972).

Training and Testing

All aspects of training and test were identical to Simulation 1a
except that for half of the networks (N= 20), only the salient animate
features were used, whereas for the remaining half of the networks
(N = 20), only the nonsalient animate features were used. The
rationale for this division was that it was possible to determine
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which of the two correlated features (e.g., salient animate features
vs. nonsalient animate features) networks associated with different
kinds of action. Networks were expected to associate only the salient
features with their respective causal actions. Given that the salient
and nonsalient features were equally correlated with different
actions during the pretraining phase, demonstrating that the pattern
of performance observed in Simulation 1a only emerges for
networks tested with the salient features and not for networks tested
with the nonsalient features would confirm that the network has
successfully “discovered” the causally relevant (in this case, the
salient) features.
One final point is worth making: The learning parameters used

to simulate the older infants were adopted here. This is because
the goal was to show how a learner with sufficient information
processing abilities might discover causally relevant features.
Adopting the learning parameters for the younger models could
result in uninterpretable findings: If networks looked equally long at
the Contact and No Contact test events in the People and Object
conditions, it would not be possible to know whether this was due to
a lack of sensitivity to salience or to insufficient learning.

Result

Figure 5 shows networks’ mean “looking times” to the Contact
and No Contact test events for networks shown nonsalient animate
features at test and assigned to the Objects and People conditions
and for networks shown salient animate features at test and assigned
to the same two conditions. Thisfigure reveals two notable takeaways.
First, networks shown the nonsalient features showed longer looking
overall at test compared to networks shown the salient features.

The basis for this was the lower learning rate and greater weight
decay for networks shown nonsalient features compared to networks
shown salient features. These lower values prevented the associations
between the nonsalient features and the different kinds of causal
actions from growing as quickly as those between the salient features
and same causal actions. Recall that it is these associations that enable
the network to make correct predictions; the stronger the associations,
the better one of the components of the association (e.g., a feature) can
predict the other component (e.g., a specific causal action). A corollary
of this is that network error (or conversely, longer looking) will
necessarily be greater for networks shown the nonsalient features than
for networks shown the salient features; the nonsalient features do a
lesser job than the salient ones at predicting the correct causal actions.
Second, only the salient features produced results that replicated those
of the older infants in Simulation 1a; the nonsalient features produced
equivalent looking across the test trials and conditions.

Discussion

Simulation 1b was designed to demonstrate that an associative-
learning mechanism can discover which of two features is causally
relevant when both features are equally correlated with different
kinds of causal action. The results indicated that the discovery of the
causally relevant feature is a natural and emergent consequence of
some features being more salient than others. This result addresses
the first objection and indicates that an associative-learning
mechanism alone can “extract” causally relevant features and that
a separate mechanism is not needed to extract such features. The
next simulation was carried out to address the second potential
objection: It was not possible in Simulation 1a to assess how
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Figure 5
Networks’ Mean “Looking Time” in the Nonsalient and Salient Conditions Across Contact and No Contact Test
Trials for Objects and People

Note. Mean “looking time” (i.e., cross-entropy error) to the Contact and No Contact test events for networks first assigned either
to the Nonsalient condition or Salient condition and then either to the People condition or to the Objects condition. Error bars
represent standard errors. See the online article for the color version of this figure.
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a network would treat unmodified and modified people and objects
following experience with unmodified and modified people and
objects.

Simulation 1c: How an Associative Learner Treats
Hybrid Objects

This simulation assessed how an associative-learning model
processed unmodified and modified people and objects following
exposure to unmodified people and objects as well as to different
“amounts” of exposure to modified objects.

Method, Training, and Testing

Network Architecture, Training, and Test

Simulation 1c was identical to Simulation 1b with two key
exceptions. First, in addition to experience with unmodified people
and objects during pretraining, networks also experienced modified
objects. These are objects with a salient inanimate feature (i.e.,
the first unit in the feature bank was set to “on” and the second unit
set to “off” for the salient group of features) and nonsalient animate
feature (i.e., the second unit in the feature bank was set to “on”
and the first unit set to “off” for the nonsalient group of features).
Crucially, like the unmodified objects, modified objects only caused
other modified objects to act through contact. Second, following the
pretraining phase, networks were assigned to one of four conditions:
Objects, People, Object with Animate Features, and People with
Inanimate Features. The modified objects shown during habituation
and test were constructed in the same manner as the objects used
during pretraining. In particular, a modified person was an entity
with a salient animate feature and a nonsalient inanimate feature;
a modified object was an object with a salient inanimate feature and
a nonsalient animate feature. All other aspects of habituation and test
were identical to Simulations 1a and 1b.

Result

Figure 6 shows the mean “looking times” to the Contact and
No Contact test events for networks assigned to one of the four
conditions. Consistent with Simulation 1a, networks assigned to the
People condition looked about equally at the Contact and No Contact
test events across all frequencies, whereas networks assigned to the
Objects condition looked longer at the No Contact test event than
at the Contact test event. Interestingly, this same pattern wasmirrored
in networks assigned to the Object with Animate Features condition
and those assigned to the People with Inanimate Features condition.
Specifically, networks assigned to the Object with Animate Features
condition looked longer at the No Contact test event than at the
Contact test event. In contrast, the difference in looking to the two test
events was close to chance for networks in the People with Inanimate
Features condition.

Discussion

Simulation 1c assessed how an associative-learning mechanism
treats hybrid objects such as peoplewith inanimate features or objects
with animate features following training with standard people and
objects as well as hybrid objects. The results demonstrated that
networks showed increased looking when unmodified objects caused
other unmodified objects to act at distance compared to through
contact. In contrast, networks showed equivalent looking to the same
two events when they involved unmodified people. Similarly,
networks looked longer when modified objects caused other
modified objects to act at a distance compared to through contact,
but their looking was close to chance when the events used modified
people. These results are important for two reasons. First, they
support the conclusion made in Simulation 1b that an associative-
learning mechanism can not only associate some feature with
different kinds of action but can discover the causally relevant
feature. Second, they indicate that networks’ looking behavior is
heavily influenced by the nature of the features that objects and

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 6
Networks’Mean “Looking Time” (i.e., Cross-Entropy Error) to the Contact and No Contact Test Events for Networks
Assigned to Each of the Four Conditions

Note. OAF = objects with animate features; PIF = people with inanimate features. See the online article for the color version of
this figure.
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entities possess; networks’ looking behavior to an object or entity
not only will be based on whether that object or entity possesses
a salient feature but on the nature of that feature. If the salient feature
is an animate feature, networks will treat as equivalent an event in
which objects with the salient animate feature causes other objects
with the same feature to act through contact and an event in which
objects with the salient animate features causes other objects of
the same kind to act at a distance. This makes a testable prediction
that should be explored in future research: Infants should treat as
anomalous events in which people with salient inanimate object
features cause action in other people at a distance but not events in
which objects with salient animate features cause action on contact
in other objects. Crucially, this is not a prediction that the core
knowledge account makes. The reason for this is that proponents of
this perspective assume that infants possess conceptually rich and
abstract knowledge about people and objects that does not depend
on the particular perceptual features of the entities or objects.
The goal of the next series of simulations is to assess the

explanatory breadth of the present associative-learning account; that
is, it was important to show that this account could account for the
behavioral findings in other prominent studies that assessed infants’
causal knowledge about animate entities and inanimate objects. The
model presented in Simulation 2 below was designed to determine
whether the present account could explain the findings in Saxe et al.
(2005). As was discussed in the Introduction, in this study 10- and
12-month-old infants looked longer when a hand (Experiment 1)
emerged from the opposite side of the stage from which a beanbag
emerged than when the hand emerged from the same side of the
stage fromwhich the beanbag emerged. However, if the event used a
toy truck (Experiment 1) or a puppet (Experiment 2), infants looked
equally long at both test events. Although these findings have
been interpreted to support the existence of core knowledge and
core cognition, Simulation 3 tested whether these results could be
explained by an associative-learning mechanism. Simulation 2 was
designed specifically to implement the idea that in the real world,
objects with animate features, but not objects lacking such features,
can cause ballistic and nonballistic motion in other objects.Moreover,
whenever ballistic motion does occur in the real world, it tends to
occur on the same side of physical space as objects with animate
features.

Simulation 2: Saxe et al. (2005)

Simulation 2 examined whether associative learning was
sufficient to explain infants’ looking behaviors in Saxe et al. (2005).

Method

Network Architecture

The network architecture used in Simulation 2 differed from that
used in Simulation 1a in two major ways. The first difference was
that two motion vectors or groups were used as opposed to one
motion group. The rationale for this decision was that ballistic
motion occurred on the left and right sides of space in Saxe et al.
(2005). Thus, one of the motion groups was located on the left side
of “network space”; the other motion group was located on the right
side of network space. The second difference concerned the nature
of that motion. In Simulation 1a, networks were exposed to “linear”

motion. In this simulation, networks were exposed to “ballistic”
motion; that is, networks were shown events in which a one- (i.e., an
inanimate object) or four-unit (i.e., an animate entity) object either
did or did not undergo an inverted U-shaped motion pattern, which
is akin to simulated ballistic motion (see Figures 6 and 7). All other
aspects of the network architecture used in Simulation 2 were
identical to Simulation 1a.

Training

Pretraining

Aswas the case in Simulation 1a, networks received 1,500 epochs
of pretraining or “real-world” experience. In addition, the values of
the training parameters (e.g., learning rate, weight decay, noise, and
momentum) were identical to those used in Simulation 1a. During
pretraining, networks learned the following key relations. First, they
learned that object with animate features caused an object (this is the
single active unit in Figure 7) to engage in an action that an adult
would define as ballistic motion on the left (N = 8) and right (N = 8)
sides of network space. For these events, at time t = 1, the activation
value of the input unit located in Row 5 Column 1 (this is what is
depicted in Figure 1) of the motion group was set to 1 (the activation
values of the remaining units were set to 0), and the network’s task
was to activate the output unit located in Row 4 Column 2 at time t=
2 in the corresponding motion group. At time t = 2, the activation
value of the input unit located in Row 4 Column 2 of the motion
group was set to 1, and the network’s task was to activate the output
unit located in Row 3 Column 3 in the corresponding motion group.
The “apex” of the object’s trajectory occurred in Row 2 Column 4.
This continued until the object reached Row 5 Column 7 of
the motion group or the right edge of the motion group. Second,
networks learned that animate entities could also fail to cause
ballistic motion in the abovementioned object on the left (N= 8) and
right (N = 8) sides of network space. The real-world equivalent to
this would be situations in which a person finds that an object is too
heavy to displace. To instantiate the absence of ballistic motion, the
object remained in Row 5 Column 1 across all time steps. Third, the
network learned that objects neither caused ballistic motion in other
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Figure 7
The Motion Trajectory of an Object in Simulation 2

Note. The white dashed arrow indicates the motion path of that object.
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objects from the left (N = 16) nor from the right (N = 16) sides of
network space. In addition, networks learned that animates themselves
could engage in ballistic motion—this would be akin to a person
jumping in a ballistic motion trajectory (e.g., an Olympic-like “long
jump”)—irrespective of whether another animate was located on the
same side (N = 16) or different side of network space (N = 16). To
simplify these latter events, only a single animate entity—represented
by four units (Figure 8)—was used in the motion group. To equate
the number of time steps that it took for an object or animate entity to
reach the right edge of the motion group—given that the object
(represented by a single unit) in the motion group was physically
smaller than the animate entity in the motion group and thus should
take longer to reach the right edge than the animate entity—the
animate remained at the left edge of the motion group for two time
steps before beginning to move and then remained at the right edge of
the motion group for two time steps after it had completed its (ballistic
motion) trajectory. Finally, as in Simulations 1a and 1c, networks also
experienced different amounts (i.e., the six different frequencies) of
atypical object action. In the current simulation, this means events in
which objects with inanimate features cause ballistic motion in other
objects.
Despite differences in their particulars, Simulations 1 and 2

instantiated the idea that infants’ looking behavior in Spelke et al.
(1995) and Saxe et al. (2005) was based on learned associations
between some attribute A and some number of other attributes X and
Y and that between some attribute ¬A and one of the previous
attributes X. In terms of the real world, infants may have learned
that things with features that are characteristic of animate entities
(attribute A) not only can engage in ballistic motion themselves but
can either cause adult-defined ballistic motion in inanimate objects
(attribute X) or fail to cause ballistic motion (attribute Y) in those
objects as well. In contrast, infants might learn that things with
features that are characteristic of inanimate objects (attribute ¬A)
cannot produce ballistic motion (attribute Y) in other things.
Instantiating the same mechanistic idea across simulations was
paramount given that the overarching goal of this article was to
demonstrate that the same hypothesized mechanism of change

could explain the emergence of infants’ knowledge about the
causal properties of animate entities and inanimate objects without
recourse to core knowledge.

Habituation

Twenty networks were assigned to the Hand, Train, and Puppet
conditions (total N = 60). These corresponded, respectively, to
the experimental conditions to which infants were assigned in
Experiments 1 and 2 of Saxe et al. (2005). Given that infants were
habituated to events in which a beanbag or puppet was thrown over a
wall from both sides of the stage, networks were habituated to ballistic
motion on both sides of the network’s visual field. Crucially, the
objects and entities used during habituation were not shown during
pretraining. Finally, the length of the habituation phase was four
epochs.

Testing

At test, networks received eight Same Side (four Same Side Left;
four Same Side Right) and eight Different Side (four Different Side
Left; four Different Side Right) test trials. On the Same Side trials,
after the inanimate object (akin to the beanbag in Saxe et al., 2005;
for networks in the Hand or Train condition) or animate entity (akin
to the puppet in Saxe et al., 2005; for networks in the Puppet
condition) was thrown, either another animate entity (akin to the
human hand) or inanimate object (akin to the train) was revealed on
the side of the stage from which the first inanimate object (beanbag)
or animate entity (puppet) emerged. On the Different Side trials,
either a second animate entity (i.e., a hand) or inanimate object (i.e.,
a train) was revealed on the opposite side of the stage from which the
first inanimate object (beanbag) or animate entity (puppet) emerged.
Network cross-entropy error—averaged over the Same and Different
Side test trials—produced by both test events was used as a proxy for
looking time. Note that just as two novel objects were shown during
the test phase in Simulation 1a, two novel objects were shown here.
Two objects were shown during the Same and Different Side Right
events; the other objects were shown during the Same and Different
Side Left events. This explains how the number of test events can go
from four in Simulation 1a to eight in Simulation 2, even though both
simulations used exactly the same number of objects at test.

Result

Figure 9 shows the networks’ mean “looking times” to the Same
Side and Different Side test trials across the Hand, Train, and Puppet
conditions for each of the six frequencies. As was the case in Saxe
et al. (2005), networks assigned to the Hand condition “looked”
longer at the Different Side test events than at the Same Side test
events. In contrast and like infants in Saxe et al. (2005), networks
assigned to the Puppet or Train conditions looked about equally long
at the two test events. Crucially, both patterns of results—that is,
longer looking to the Different than the Same Side test events for
networks assigned to the Hand condition and about equal looking to
the same events for networks assigned either to the Puppet or Train
conditions—were obtained across all six frequencies. Thus, even
when surface features are not perfectly diagnostic of an object or
entity’s agency status as in the 100% case, networks had no difficulty
learning that agents cannot cause objects to undergo ballistic motion
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Figure 8
The Animate Used in Simulation 2

Note. This object also underwent ballistic motion (represented by the
inverted U-shaped arrow).
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if both occupy opposite sides of space. Additionally, networks, like
infants, learned that objects with animate features can, themselves,
engage in ballistic motion irrespective of another object’s location in
space.
One potential objection to the current set of results is that

networks assigned to the Train condition behaved differently than
infants in the same condition in Saxe et al. (2005). This is because
the model’s behavior following exposure to the 100% frequency
differed from that following exposure to the 50% frequency:
Networks trained on the former frequency looked longer at the Same
Side test trial than at the Different Side test trial. In contrast,
networks trained on the latter frequency showed the opposite
pattern. Here, it is important to bear in mind that across all
frequencies the networks’ pattern of looking to the Same and
Different Side events in the Train condition varies. For example,
although it is true that for the 100%, 90%, and 50% frequencies the
network looked slightly longer at the Same Side test event than at the
Different Side test event, the pattern reverses for the 80%, 70%, and
60% frequencies. Thus, the pattern of looking to these events varied
unsystematically across frequencies (unlike the systematic behavior
across frequencies for networks in the Hand condition) and likely
resulted from the random initialization of the weights in the network.

Discussion

Simulation 2 extended Simulation 1a to examine whether domain-
general associative learning was sufficient to explain infants’ looking
behavior in Saxe et al. (2005). These authors found that infants

assigned to the Hand condition looked significantly longer at the
Different Side test event than at the Same Side test event, whereas
infants assigned either to the Train condition or to the Puppet
condition looked about equally long at both events. The present
simulation results provided a qualitative match to those of Saxe et al.
(2005). Together, these results indicate that an associative-learning
mechanism—instantiated in an artificial neural network—is sufficient
to explain not only how infants acquire causal knowledge about
people and objects (Simulation 1a) but how theymight acquire causal
knowledge about animate entities and inanimate objects broadly
(Simulation 2). It should be noted here that I chose not to simulate
Experiment 3 in Saxe et al. (2005). In this experiment, infants were
not allowed to handle the beanbag before habituation. Given that there
was no mechanism for physically handling objects in the present
simulation, a simulation of Experiment 3 would have produced
identical results to the simulation of Experiment 1. Thus, it seemed
unnecessary to model Experiment 3.

The next two simulations were designed to examine further the
explanatory breadth of the present associative-learning account.
Simulation 3 was carried out to show that associative learning is
sufficient to account for infants’ looking behavior in a follow-up
study to Saxe et al. (2005) by Saxe et al. (2007). This study examined
whether 7- and 10-month-olds understood that animate entities, but
not inanimate objects, can cause ballistic motion in other objects,
rather than the question posed by Saxe et al. (2005), which was
whether infants understand that ballistic motion between an object
and an agent must occur on the same side of physical space. Saxe
et al. (2007) found that 7- and 10-month-olds looked longer when
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Figure 9
Networks’ Mean “Looking Time” (i.e., Cross-Entropy Error) to the Same Side and Different Side Test Trials Across the Hand, Train, and
Puppet Conditions Across Six Frequencies
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the beanbag emerged from the side on which the train was located
than when it emerged from the side on which the human hand
(Experiment 1) or novel puppet (Experiment 2) was located. In
addition, Experiment 3 revealed that infants looked longer when a
hand emerged from the opposite side from which the beanbag was
thrown than when it emerged from the same side from which the
beanbag thrown. Given that Simulation 2 demonstrated that a neural
network will also look longer at Different Side test trials than at Same
Side test trials when it involved a human hand, the simulation of
Experiment 3 here is essentially a replication of Simulation 2. In
addition, given that the only thing that distinguished animate entities
from inanimate objects in the present series of simulations was
activation along the feature bank of units—that is, I did not model
specific kinds of objects (e.g., vehicles, dolls, toys, etc.)— I chose not
separately to model Experiments 1 (which involved human hands)
and 2 (which involved a puppet object with hair and eyes) in Saxe
et al. (2007). One of the motivations for not modeling specific body
parts is because, as I mentioned at the outset, it remains unanswered
whether infants differentially attend to the surface features of animate
entities. Given that this question remains largely open, here it was
crucial not to make assumptions about the features to which infants
do and do not attend. Thus, Simulation 3 reported two simulations.
The first simulation modeled broadly the results from Experiments 1
and 2 in Saxe et al. (2007). Although it was the case in Saxe et al.
(2007) that a human hand was used in Experiment 1 and a puppet in
Experiment 2, respectively, the behavioral results of both experi-
ments were equivalent. The second simulation modeled Experiment
3 in Saxe et al. (2007), which again is a replication of the Hand
condition in Simulation 2.

Simulation 3: Saxe et al. (2007)

Simulation 3 tested the explanatory breadth of the present
associative-learning account to determine whether it could explain
infants’ looking-time data across each of the three experiments in
Saxe et al. (2007).

Method, Training, and Testing

The network architecture and the values of the learning parameters
used in Simulation 3 were identical to that in Simulation 2.

Pretraining

The pretraining phase—including the length of this phase—was
identical to that used in Simulation 2 except that these networks in
the current simulation did not additionally learn that things with
animate surface features could themselves engage in ballistic
motion. This is because this fact was not tested in Saxe et al. (2007).

Habituation

Following pretraining, 20 networks were used to simulate
Experiments 1 and 2 in Saxe et al. (2007), and 20 networks were
used to simulate Experiment 3 in the same study. The habituation
phase used here was identical in all respects to that used in
Simulation 2.

Testing

Following habituation, networks in the simulation of Experiments
1 and 2 of Saxe et al. (2007) received eight “Hand” trials—in which
four distinct objects with animate features caused ballistic motion in
an object—and eight “Train” trials, in which four distinct objects
with inanimate object surface features caused ballistic motion in an
object. Crucially, all eight test stimuli (i.e., the four animate entities
and the four inanimate objects) were not experienced during the
pretraining phase. As before, network cross-entropy error served as
a proxy for infant looking time.

Results

Figure 10 shows the mean “looking times” to the Hand and Train
test trials across all six frequencies for networks used to simulate
Experiments 1 and 2 in Saxe et al. (2007). Figure 11 shows the mean
looking times to the Same Side and Different Side test trials for
networks used to simulate Experiment 3 in the same study across the
same six frequencies. As shown in Figure 10, regardless of how
frequently objects engaged in atypical action during pretraining (i.e.,
objects causing other objects to undergo ballistic motion), networks
looked longer when the beanbag emerged from the side onwhich the
toy train was located than when it emerged from the side on which
the human hand was located. Additionally, as is shown in Figure 11,
networks looked longer when the beanbag emerged from the side on
which the human hand was not located than when it emerged from
the side on which the human hand was located. This latter result
replicated that from Simulation 2.

Discussion

The results of this simulation qualitatively matched the behavioral
data from Saxe et al. (2007): Networks looked longer at the Train
trials than at the Hand trials (Figure 10). Likewise, networks
looked longer at the Different Side than at the Same Side test trials
(Figure 11). Importantly, as has been the case to this point, these
results largely did not depend on how frequently objects engaged
in atypical action during pretraining. Combined with the results
from Simulations 1 and 2, these results demonstrate that the present
associative-learning account is sufficient to account for the behavioral
data across the separate experiments in Saxe et al. (2007). In addition,
the results from Simulations 2 and 3 are important because they
demonstrate the explanatory breadth of the associative-learning
account discussed at the outset of this article; this account could
explain infants’ looking behaviors in Spelke et al. (1995) but could
also account for the studies by Saxe et al. (2005) and Saxe
et al. (2007).

The goal for the final simulation was to push the model further to
determine whether it (and by extension, the present associative-
learning account) could capture infants’ behavior in yet another
classic study, by Markson and Spelke (2006). This study demon-
strated that 7-month-olds expected objects shown to be self-
propelled in the past, but not objects whose past movements were
generated by a human hand, to begin moving spontaneously and
without aid in the future, but only when the objects possessed
animate-like features (e.g., eyes, hands). Although these findings
have been interpreted to be the result of inborn core knowledge
principles (e.g., Shutts et al., 2009), the following simulation tested
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whether the findings can be explained by the operation of a domain-
general associative-learning mechanism.

Simulation 4: Markson and Spelke (2006)

The goal of the final simulation was twofold. First, it was
designed to determine whether the present associative-learning
account could be extended still further to account for the data in each
of the six experiments inMarkson and Spelke (2006). Second, it was
designed to establish the domain generality of the present account.
Given that Markson and Spelke (2006) were interested in whether
infants could quickly learn about themotion properties of objects and
entities rather than in infants’ causal-learning abilities, demonstrating
that the present associative-learning account can capture the pattern
of results in Markson and Spelke (2006) can speak to its ability to
capture findings across domains, and hence to the domain-generality
of the current account.

Method

The model architecture used in this simulation was identical to
that used in Simulation 1a with three exceptions. First, only one
bank of 40 units was used to represent a single animate entity rather
than two separate banks of 40 units. Second, the size of the input and
corresponding output motion layers was increased from 7 to 35 to
accommodate distinct representations for self-propelled and hand-
generated causal action (see Figure 12). Third, the input layer

included a two-unit “unrelated” group. This made it possible to
simulate the unrelated activity that participants engaged in between the
familiarization and test phases in Experiment 2 inMarkson and Spelke
(2006). In addition to these differences, the present simulation differed
fromMarkson and Spelke (2006) in the following way: In their study,
infants experienced two blocks of trials, each consisting of a set
of familiarization and test trials. Preliminary simulations indicated
that the results did not depend on whether networks experienced one
or two blocks. Thus, to simplify the present simulations, only one
block of familiarization and test trials were simulated.

Training and Testing

Pretraining

Networks experienced four kinds of events during the pretraining
phase. In one event (N = 16), networks learned that objects with
animate features could engage in self-propelled motion. The way
motion was represented in this simulation is shown in Figure 12
(right side). In another event (N= 16), networks learned that animate
entities could be caused to move. The representation for this event
is also shown in Figure 12 (left side). In a third event (N = 16),
networks learned inanimate objects could only be caused to move.
In a final event, networks experienced different amounts of atypical
object action such that objects with inanimate features engaged in
self-propelled motion. The length of the hand-generated and self-
propelled motion events was three times steps.
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Figure 10
Networks’ Mean “Looking Time” (i.e., Cross-Entropy Error) to Hand and Train Test Trials Across Six Frequencies

Note. See the online article for the color version of this figure.
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Habituation

Following pretraining, 20 networks were used to simulate
Experiments 1–6 (total N = 120). Networks used to simulate
Experiments 1, 2, 3, and 5 were familiarized to two self-propelled
and two hand-generated events. The simulation of Experiments 1
and 2 used animate entities; the simulation of Experiments 3 and
5 used inanimate objects. An important point to mention is that
networks used to simulate Experiment 2 received an intervening
“play break” between the familiarization and test phase. During
this break, the network simply had to copy the pattern of activation
presented as input to the input group labeled “unrelated” to and
along the corresponding output group. In the current simulation,
the first unit in this group was turned on, and the second unit was
turned off—the networks’ job was simply to copy this pattern of
activation at the output layer. Given that Markson and Spelke
(2006) did not specify the activities used during the intervening
play break, some liberties were taken here in choosing the activity
for the model at that time. Although the particular activity that
the network completed during this break was of little importance,
it was critical that the task be unrelated to what networks were
habituated to and tested on (which presumably was the case in
Markson & Spelke, 2006).
Networks used to simulate Experiments 4 and 6 were

familiarized to the object to which networks used to simulate
Experiments 3 and 5 were familiarized to ensure that their
equivalent looking at the test events in the simulations of
Experiments 3 and 5—like infants’ equivalent looking in these
experiments in Markson and Spelke (2006)—were not due to their
inability to discriminate them. These networks were then shown

this object at test along with an object to which they were not
familiarized.

Before proceeding, it is important to distinguish between the
dependent measure used in the study by Markson and Spelke
(2006) and that used in the current simulation. In their study,
Markson and Spelke (2006) posited that if infants were habituated
to an event in which object A is self-propelled and an event
in which object B is moved by a human hand, then infants
should subsequently pay more attention to object A when both
are presented motionless on opposite sides of a stage. The
rationale is that infants should expect object A to continue moving
on its own (as it did during habituation), whereas object B should
remain motionless (because a human hand was not present to
move it).

In contrast to Markson and Spelke’s (2006) testing procedure,
in the current simulation, networks were shown two test events.
In one event, the self-propelled object from familiarization
continued to engage in self-propelled motion at test. In the
other event, the hand-generated object from familiarization now
engaged in self-propelled motion at test. Networks were expected
to “look longer” when the previously hand-generated object
engaged in self-propelled motion at test than when the previously
self-propelled object engaged in this same motion. Additionally,
given that Markson and Spelke (2006) found that this effect was
moderated by an object’s animacy status, a similar moderation
effect was anticipated here. Although this dependent measure
differed from that used in Markson and Spelke (2006), the
presumed basis for infants’ looking in Markson and Spelke (2006)
and the model’s looking here was the same: Events in which hand-
generated objects engage in self-propelled motion should be
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Figure 11
Networks’ Mean “Looking Time” (i.e., Cross-Entropy Error) to Different Side and Same Side Test Trials Across Six Frequencies

Note. See the online article for the color version of this figure.
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treated as more anomalous than events in which self-propelled
objects engage in the same motion.

Results

Figure 13 shows the networks’ mean looking times to the Hand-
Generated and Self-Propelled test events. As can be seen, across
all six frequencies networks in Experiments 1 and 2—which used
objects with animate features—looked longer when the hand-
generated object from familiarization engaged in self-propelled
motion than when the self-propelled object from the same phase
engaged in self-propelled motion. In contrast, networks in
Experiments 3 and 5—which used objects with inanimate
features—showed slightly longer (but nearly equivalent) looking
to the self-propelled test event than to the hand-generated one.
Although this latter result was technically reliable (recall that it
was not reliable in Markson & Spelke, 2006), three notes are
worth making. First, the direction of networks’ responses to the
two test events was in the opposite direction as that in Experiments 3
and 5. This suggests that the networks were not simply biased to
attend longer to the hand-generated test event than to the self-
propelled test event; the events were treated differently based on
whether they used objects with animate features (Experiments 1 and
2) or objects with inanimate features (Experiments 3 and 5). Second,
it should be clear from Figure 12 that the magnitude of the difference
in looking time to the two test events is considerably larger for
Experiments 1 and 2 than it was for Experiments 3 and 5. Although

Markson and Spelke (2006) did not examine whether this was true in
their study, it is safe to assume that these authors would have found
the difference in looking to the two test events to be larger in
Experiments 1 and 2 compared to Experiments 3 and 5. Third, and as
was mentioned in the Results section of Simulation 1a, the reason
there was a difference in the amount of time that networks looked at
the two test events in Experiments 3 and 5 is because the range of
possible “looking” responses was presumably much narrower than
that in infants. Unlike the models, infants’ looking responses could
vary over a much greater range.

Crucially, as can be seen above in Figure 14, networks looked
longer at the new test stimulus than at the old test stimulus, and this
was true across all six frequencies. This result indicates that, like
infants in Markson and Spelke (2006), networks’ nearly equivalent
treatment of the two test events during Experiments 3 and 5 was not
due to their inability to discriminate the familiarization stimuli used
in them.

Discussion

The goal of Simulation 4 was to model all six experiments
in Markson and Spelke (2006). This study examined whether
infants expected objects that were shown to be self-propelled in
the past to continue to be self-propelled in the future and objects
shown to be caused to move by a human hand in the past to
continue to be caused to move in the future. Markson and Spelke
(2006) found this to be the case. Similarly, the current data
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Figure 12
An Example of the Input-Target Pairs Used in Simulation 4

Note. The left side of the figure shows the representation of hand-generated motion; the right side of the figure shows the representation of self-propelled
motion.
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indicated that networks could also learn these causal relations.
Perhaps most importantly, Simulation 4 extends the earlier
simulations to show that an associative-learningmechanism continues
to be sufficient to explain how infants might learn about other causal
features of the world such as about the causal factors that produce
motion in objects and entities. Two broad takeaways can be gleaned
from the present series of simulations. First, they demonstrate that core
knowledge is not necessary to explain infants’ causal knowledge
about people and inanimate objects. Second, they demonstrate that

associative learning is sufficient to explain how this knowledge might
emerge throughout development.

General Discussion

The goal of this article was to show that domain-general associative
learning—implemented in an artificial neural network—is sufficient
to account for how infants learn about the various causal properties
of animate entities and inanimate objects. The crux of the
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Figure 13
Networks’ Mean “Looking Time” (i.e., Cross-Entropy Error) to Hand-Generated and Self-Propelled Test Events (Left Side) and Their
Looking Time to the New and Old Test Trials (Right Side)

Note. exp = experiment. See the online article for the color version of this figure.

Figure 14
Networks’ Mean “Looking Time” (i.e., Cross-Entropy Error) to the New and Old Test Trials

Note. See the online article for the color version of this figure.
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associative-learning account presented here is that infants learn to
associate whatever low-level surface features distinguish animate
entities from inanimate objects with multiple kinds of perceptual-
based, low-level, kinematics depictions of causal action, whereas
they learn to associatewhatever surface features distinguish inanimate
objects from animate entities with one (or a small number of)
perceptual-based descriptions of causal action. This may explain why
across multiple studies that examine infants’ causal knowledge about
animates and inanimates, infants tend to be less surprised when
animate entities engage in multiple forms of causal action (e.g., action
at a distance vs. action on contact) than when inanimate objects
engage in multiple forms of causal action.
Simulation 1a had two aims. First, it examined whether an

associative-learning mechanism could account for infants’ looking
behavior in Spelke et al. (1995). Second, it tested “younger”models
to determine whether the learned associations by the model between
different features and different actions undergo a developmental
progression. The results from this simulation revealed that an
associative-learning mechanism could explain infants’ looking
behavior in Spelke et al. (1995)—the models’ pattern of looking
mirrored infants’ looking behavior in Spelke et al. (1995). In addition
to capturing the original set of findings by Spelke et al. (1995), the
model made a testable prediction: Infants’ knowledge about the
causal action of people and objects should undergo a developmental
progression such that infants younger than 7 months of age should
fail to show increased looking when objects cause other objects to
move at a distance. The basis for this is simple: With less experience
with objects and people in the real world, younger networks will not
have had enough time to encode the relevant associations between
different features of objects and people and different kinds of causal
action.
Simulations 1b and 1c were carried out to resolve two interrelated

issues. The first issue concerned whether an associative-learning
mechanism could “discover” a causally relevant feature when that
feature was as correlated with different kinds of causal action as
another, less causally relevant feature. The second issue concerned
how an associative-learning mechanism treated “hybrid” objects
such as objects with some combination of salient and less salient
animate and inanimate features. Infants are likely to encounter
such instances in the real world, even if they experience them
infrequently, and thus it seems important to determine how they treat
those instances. This issue is especially important to resolve if, as
is claimed here, the primary mechanism they use to learn about
people and objects is associative learning. The results of Simulation
1b indicated that an associative-learning mechanism can extract
causally relevant features if these features are made more salient
than another feature; a separate mechanism was not needed. The
results of Simulation 1c revealed that “real-world” experience with
unmodified people and objects as well as modified objects did not
influence how networks processed unmodified people and objects
at test. In addition, the effect that this real-world experience had on
processing modified people and objects at test depended on the
nature of the features possessed by such people and objects:
Networks showed heightened looking when modified stimuli with
salient inanimate features caused action at a distance in other
objects with salient inanimate features compared to when the same
objects interacted through contact. In contrast, networks were at
chance to both events when those events used modified stimuli
with salient animate features. This latter result is important

because it makes a testable prediction that should be explored in
future research: Infants who are habituated to and tested on modified
people and objects should show the same pattern of looking as
networks in Simulation 1c. This prediction is theoretically significant
because it is presumably at odds with what might be predicted if
infants’ knowledge about people and objects was subserved by core
knowledge. The core knowledge account would predict that the
inferences that infants make about the causal capacities of people and
objects should be (at least somewhat) impervious to the surface
features of those objects and people. This is because infants’ causal
knowledge about people and objects is thought to be abstract and not
tied to the features of any one object. This means that it should be
possible to determine whether core knowledge or an associative-
learning mechanism underlies infants’ causal knowledge about
people and object by testing infants younger than 7 months of age as
well as exposing infants to modified people and object stimuli.

Simulations 2 and 3 extended this simulation to show that the same
associative-learning mechanism could account for the experimental
data in Saxe et al. (2005) and Saxe et al. (2007). These simulations
showed that associative learning alone is sufficient not only to
explain how infants learn that animate entities, but not inanimate
objects, can cause action at a distance in other entities (this is what
Simulation 1a showed) but how they learn that animate entities, but
not inanimate objects, can cause ballistic motion in other things.
The networks, like the infants, expected objects with animate features
not only to be capable of ballistic motion themselves but to be able
to cause other objects to engage in that motion; the networks held
no such expectation for objects with inanimate features. Finally,
Simulation 4 accounted for the experimental data across all six
experiments in Markson and Spelke (2006). This study examined
whether infants could quickly learn that some objects can engage in
self-propelled motion whereas other objects must be made to move
through hand-generated motion. This simulation demonstrated that
infants’ knowledge about the self-propelled motion of objects can
also be explained by the operation of an associative-learning
mechanism; there is no need to assume that the capacity to quickly
associate objects with different kinds of action is supported by core
knowledge or core cognition. In total, the model was able to capture
the behavioral data across 13 separate experiments that spanned
four different studies as well as address several potential objections
andmake predictions for additional experiments that should be tested
in the future. Together, the present series of simulations suggest that
innate knowledge and specialized core systems may not be necessary
to explain how infants acquire causal knowledge about animate
entities and inanimate objects broadly; domain-general associative
learning alone is sufficient to explain the origins of infants’ causal
knowledge about animates and inanimates.

Potential Criticisms

Nonetheless, three potential criticisms are worth noting. The first
concerns the limited number of studies that were the focus of the
present simulations. For example, one study that could have been
but ultimately was not modeled here was that by Muentener and
Carey (2010). This study demonstrated that 8-month-old infants
ostensibly understand that inanimate objects require contact to move
and that things with hands, but not inanimate objects (e.g., a toy
truck), can cause state changes in other things (e.g., causing a box to
break into pieces). The rationale for not includingmore studies in the

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

ASSOCIATIVE LEARNING SUPPORTS CAUSAL LEARNING IN INFANTS 21



present series of simulations was that it was not possible to model all
of the potentially relevant past and present experiments—this list is
simply too long. More to the point, the goal here was to show that
when a subset of these studies is considered—each of which has
received considerable attention in the developmental literature and
thus presented ideal test cases—an associative-learning mechanism
can account for the full range of data. Still, there is no reason to think
that the present account could not be extended to explain other
studies such as that by Muentener and Carey (2010). For instance,
this could be achieved by extending the present simulations to
include pretraining events in which things with animate-like features,
but not things that lack such features, can cause state changes in
other physical objects through direct contact. The network should
subsequently show “longer looking” when things with animate
features cause state changes in inert objects at a distance but not on
contact, but the same network should be equally surprised when an
inanimate object causes state changes on contact or at a distance.
A second criticism is that the present associative learning can only

explain the narrow range of studies that were the focus of the present
series of simulations but cannot be extended to explain studies that
use stimuli with little-to-no cues to animacy. An example of this is a
recent study by Stojnić et al. (2023). Eleven-month-old infants were
familiarized to one or two of a small number of “benchmark” tasks
that were designed to assess infants’ common-sense reasoning
abilities. Half of these tasks focused on infants’ ability to attribute
goals to an agent; the remaining half assessed infants’ capacity to
distinguish between efficient and inefficient actions. For example, in
one of the goal attribution tasks, called the goal-directed task, infants
were familiarized to an event in which an animated simple shape
repeatedly approached one of two inert simple shapes in a simple
grid world—the inert shape that the animated shape repeatedly
approached can be thought of as the animated shape’s goal object.
Following familiarization, infants were shown two test events. In the
New Location test event, the animated simple shape approached the
old object, but in a new location (relative to the location seen during
familiarization). In the New Object test event, the animated shape
approached a new object, which was located in the old object’s
original, familiarization location. These authors followed a similar
procedure to test infants’ understanding of action efficiency. For
example, in one of the rationality attribution tasks, called the
Efficient-Agent task, infants were familiarized to an event in which a
different but equally simple, animated shape followed a curvilinear
“rational” path to reach an inert simple shape whose location
was obstructed by an obstacle—the curvilinear path was justified
because it allowed the animated shape to bypass the obstacle that
separated it from the target object. Infants were then shown two test
events. In the Efficient test event, because the target object was no
longer obstructed by the obstacle, the animated shape was able to
follow a direct, linear, and “rational” path to reach the target object.
In the Inefficient test event, although it was the case that the target
object was no longer obstructed, the animated shape nonetheless
moved along a curvilinear (and now unwarranted or irrational) path
to reach it. The results suggested that infants not only attributed
goals to an agent but recognized whether that agent’s actions were
efficient: Infants looked longer at the New Object test event than at
the New Location test event in the goal-directed task. In contrast, in
the Efficient-Agent task, infants looked longer at the Inefficient test
event than at the Efficient test event. These authors interpreted these
results to mean that infants “expect agents’ actions to be goal

directed towards objects, not locations, and that they expect agents’
goal-directed actions to be rationally efficient” (p. 4).

Although it may be tempting to conclude that these results in fact
demonstrate that infants can attribute goals to objects and determine
whether an action is efficient, I see no reason why these results could
not also be explained by the operation of simpler, domain-general
learning mechanisms such as habituation and associative learning.
For example, infants may well have looked longer at the NewObject
test event than at the New Location test event in the goal-directed
task and longer at the Inefficient test event than at the Efficient test
event in the Efficient-Agent condition simply because infants failed
to fully encode the events to which they were familiarized. As a
result, infants may have been drawn more toward the perceptually
more familiar test events (i.e., the New Object and Inefficient test
events) than toward the perceptually novel events (i.e., the New
Location and Efficient test events). This contention is supported by a
rich history that has established that if infants fail sufficiently to
encode an event, they will continue to orient toward that event to
complete their encoding of it. This idea was perhaps best captured
by Sokolov’s (1960) neuronal model of habituation. According to
this model, habituation is the process whereby learners continually
compare their internal model of a stimulus to the observed stimulus
until their internal model matches the observed stimulus. On this
model, then, infants should be more likely to show a familiarity
preference (i.e., longer looking to the familiar test event than to the
novel test event) than a novelty preference (i.e., longer looking to the
novel test event than to the familiar one) if there is a mismatch
between the observed and internally represented stimulus; that is,
infants should look longest at a familiar stimulus than at a novel one
if the representation of the associative relations among the features
of the familiar stimulus is not sufficiently well encoded to support
looking elsewhere.

A similar idea was put forward by Hunter and Ames (1988; for
empirical evidence of this perspective, see Bogartz et al., 1997,
2000; Hunter et al., 1982, 1983; Rose et al., 1982). The crux of
their view is that whether an infant shows a familiarity or novelty
preference depends on the amount of time that they are familiarized
to a stimulus or event as well as on the complexity of that stimulus or
event: Infants should be more likely to show a familiarity preference
if the stimuli or events to which they are familiarized are complex
and the amount of time that they are familiarized to those stimuli is
relatively short. This is precisely the situation that infants were
presented with in Stojnić et al. (2023): Although the events used
simple shapes, the events themselves were relatively complex and
abstract. This, combined with the fact that the study relied on
experimenter-defined familiarization—which is known to induce
familiarity preferences (e.g., Bogartz et al., 2000; Cohen & Marks,
2002)—rather than infant-controlled habituation, could have resulted
in a familiarity preference rather than a high-level assessment about
an agent’s goal and the rationality of its actions.

A final potential criticism concerns the lack of behavioral data.
The omission of behavioral data was a deliberate choice rather than
an oversight. My primary objective was to put forward a theoretical
account for how infants acquire causal knowledge about animate
entities and inanimate objects as well as provide a proof of concept
that the perspective—when implemented in an artificial neural
network—can provide a developmentally and mechanistically
inspired explanation for how infants acquire causal knowledge of
animates and inanimates. In other words, my goal was to offer a
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mechanistically focused theoretical account of how infants might
acquire causal knowledge about objects and entities that has
potential to address existing gaps in the literature and that can form
the basis of new research.

Two Remaining Issues

Before closing, two issues are worth addressing. First, it is worth
touching on the status of the debate about the origins of infants’
knowledge and concepts. Second, it is worth discussing what can be
gleaned from determining whether a given learning mechanism
or process is domain-general or domain-specific. In terms of the first
issue, although it is the case that some researchers have begun to
urge the field to move beyond the “nativist–empiricist” debate and
to adopt a “developmental cascades” view of development, which
emphasizes that developmental milestones represent points in a
cumulative cascade of events and that development itself is best
viewed as continuous, interconnected, cumulative, and context-
dependent (e.g., Malachowski & Needham, 2023; Masten &
Cicchetti, 2010; Oakes & Rakison, 2019; Spencer et al., 2009),
the debate about the origins of early knowledge and the mechanisms
that underpin that knowledge is still being hotly debated (for one
extremely recent example of this, see Vong et al., 2024). One reason
for this is simply that many of the foundational issues that are at the
center of this debate largely remain unresolved. In the sociomoral
domain, for example, there continues to be trenchant debate among
researchers and theorists about how infants and young children learn
to evaluate others based on their social and moral actions. In other
words, how do infants learn to distinguish between prosocial and
antisocial beings? A specific issue is whether sociomoral reasoning in
infants—that is, their capacity to distinguish between prosocial and
antisocial beings—is supported and can be described by an “innate
moral core” (e.g., Hamlin, 2013; Woo et al., 2022) and rational
processes such as naïve utility calculus (e.g., Jara-Ettinger et al.,
2016; Powell, 2022) or whether such abilities are learned via domain-
general capacities such as associative learning (Benton & Lapan,
2022; Scarf et al., 2012) that operate over low-level, perceptually
based information and cues processed by the visual system (Malik &
Isik, 2023; McMahon & Isik, 2023).
A similar debate is playing out in the face-perception literature.

One of the questions that researchers continue to focus on in this
literature is how human face expertise arises as well as what the basis
is for infants’ early emerging preference for facelike stimuli. On
the one hand, some researchers argue that face expertise is acquired
via the operation of domain-general learning mechanisms such as
associative learning (e.g., Scott & Arcaro, 2023) and that the bias
preferentially to attend to human faces and facelike stimuli arises
from nonspecific structural properties of the infant visual system and
biases such as biases for stimuli that are “top-heavy” and congruent
(Macchi Cassia et al., 2008; Simion et al., 2002; Simion & Giorgio,
2015). On the other hand, other researchers maintain that face
expertise and the early bias for human faces is in place at birth, is
modular, is domain-specific, and has a basis in specialized neural
circuits that are present in young infants (e.g., Kosakowski et al.,
2022; Powell et al., 2018).
Finally, in the causal-learning domain, there is no consensus

among researchers about what the processes are that underlie causal
reasoning in children. For example, an open question in this field
concerns whether children are “little scientists” (e.g., Gopnik &

Wellman, 1992, 2012) who use explicitly structured representations,
which are thought to be innate (e.g., Gopnik et al., 2004), combined
with rational processes that approximate Bayesian inference to make
causal judgments and decisions (e.g., Bonawitz et al., 2014; Gopnik
& Bonawitz, 2015; Gopnik & Tenenbaum, 2007) or whether such
judgments, inferences, and decisions reflect the operation of much
simpler processes such as associative learning (e.g., Benton et al.,
2021, 2024; Kloos & Sloutsky, 2013; McClelland & Thompson,
2007). Thus, it is clear that far from being a resolved (and now
outdated) issue, the nativist–empiricist debate is alive and well.

In terms of the second (and related) issue, what value, if any, is there
in determining whether the cognitive mechanism or mechanisms that
infants rely on to acquire knowledge and concepts are either domain-
general or domain-specific? One reason it is important to determine
the nature of the mechanisms that infants use to learn about the world
is that such knowledge has implications about the effectiveness
and scope of clinical treatment and intervention. For example, if
ultimately it is determined that infants’ knowledge about the causal
properties of people and objects arises from a domain-general learning
mechanism—as I am arguing in this article—then interventions
applied to aspects of that mechanism not only should impact when,
whether, how, and to what extent infants acquire causal knowledge
about people and objects but should extend to affect knowledge
acquisition in other domains. This is because, by their very nature,
domain-general learning mechanisms are processes that support
learning across a wide range of domains and content areas and are
triggered by a wide range of input types. However, if infants’
knowledge about the causal properties of people and objects is
subserved by a domain-specific learning mechanism, then inter-
ventions to different aspects of the learningmechanism should affect
learning only in those domains that fall under the purview of the
mechanism.

Conclusion

A central question in the field of cognitive development has
concerned the origins of infants’ knowledge about the causal
properties of people and objects. One answer has been to assume that
this knowledgemay be unlearned andmay derive from evolutionarily
ancient, specialized mechanisms (e.g., Gelman, 1990), modules (e.g.,
Leslie, 1995), and core knowledge and core cognition systems (e.g.,
Carey, 2009; Spelke, 2022). The present simulations illustrate that
appeals to such specialized processes and knowledge may not be
necessary to account for how infants come to learn about the causal
properties of the various things in the world. In this article, I have
shown that associative learning as instantiated in an artificial neural
network is sufficient to explain infants’ looking behavior in four
classic studies that consisted of a total of 13 experiments.
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